Home
Class 12
MATHS
A data consists of n observations x(1), ...

A data consists of n observations `x_(1), x_(2), ..., x_(n). If underset(i = 1)overset(n)Sigma (x_(i) + 1)^(2) = 9n and underset(i = 1) overset(n) Sigma(x_(i) - 1)^(2) = 5n`, then the standard deviation of this data is

A

5

B

2

C

`sqrt(7)`

D

`sqrt(5)`

Text Solution

Verified by Experts

The correct Answer is:
D

`sum_(i=1)^(n)x_(i)^(2)+2sum_(i=1)^(n)x_(i)=8n`
`sum_(i=1)^(n)x_(i)^(2)-2sum_(i=1)^(2)-2sum_(i=1)^(n)x_(i)=4n`
`sum_(i=1)^(n)x_(i)^(2)=6n" : "sum_(i=1)^(n)x_(i)=n`
`"Mean "(sum_(i=1)^(n)(x_(i))/(n))=1" Variance "=sum_(i=1)^(n)((x_(i)1)^(2))/(n)=5" : S.D. "=sqrt5`
Promotional Banner

Topper's Solved these Questions

  • JEE MAIN REVISION TEST - 1 (2020)

    VMC MODULES ENGLISH|Exercise MATHEMATICS - SECTION 2|5 Videos
  • JEE MAIN REVISION TEST - 30 | JEE -2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS|25 Videos
  • JEE MAIN REVISION TEST - 1 | JEE - 2020

    VMC MODULES ENGLISH|Exercise MATHEMATICS ( SECTION 2)|5 Videos

Similar Questions

Explore conceptually related problems

A data consists of n observations x_(1), x_(2), ..., x_(n). If Sigma_(i=1)^(n) (x_(i) + 1)^(2) = 9n and Sigma_(i=1)^(n) (x_(i) - 1)^(2) = 5n , then the standard deviation of this data is

A data consists of n observations : x_(1), x_(2),……, x_(n) . If Sigma_(i=1)^(n)(x_(i)+1)^(2)=11n and Sigma_(i=1)^(n)(x_(i)-1)^(2)=7n , then the variance of this data is

If barx represents the mean of n observations x_(1), x_(2),………., x_(n) , then values of Sigma_(i=1)^(n) (x_(i)-barx)

The standard deviation of n observations x_(1), x_(2), x_(3),…x_(n) is 2. If sum_(i=1)^(n) x_(i)^(2) = 100 and sum_(i=1)^(n) x_(i) = 20 show the values of n are 5 or 20

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

Let S_(k)=underset(ntooo)limunderset(i=0)overset(n)sum(1)/((k+1)^(i))." Then "underset(k=1)overset(n)sumkS_(k) equals

If the standard deviation of n observation x_(1), x_(2),…….,x_(n) is 5 and for another set of n observation y_(1), y_(2),………., y_(n) is 4, then the standard deviation of n observation x_(1)-y_(1), x_(2)-y_(2),………….,x_(n)-y_(n) is

The means and variance of n observations x_(1),x_(2),x_(3),…x_(n) are 0 and 5 respectively. If sum_(i=1)^(n) x_(i)^(2) = 400 , then find the value of n

Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2) . The value of underset(-2)overset(4)intf(x)dx is :

If n(A_(i))=i+1and A_(1)subA_(2)sub... subA_(99),then n(underset(i-1)overset(99)UA_(i))=