Home
Class 12
MATHS
Let veca,vecb,vecc be three non coplanar...

Let `veca,vecb,vecc` be three non coplanar and `vecd`be a vector which is perpendicular to `veca + vecb + vecc`. If `vecd = xvecb xx vecc + yvecc xx veca + zveca xx vecb` the-

A

xy + yz +zx=0

B

x=y=z

C

`x^(3) =y^(3) =z^(3) = 3xyz`

D

`x +y +z=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and their relationships. ### Step 1: Understand the Problem We have three non-coplanar vectors \( \vec{a}, \vec{b}, \vec{c} \) and a vector \( \vec{d} \) which is defined as: \[ \vec{d} = x (\vec{b} \times \vec{c}) + y (\vec{c} \times \vec{a}) + z (\vec{a} \times \vec{b}) \] We know that \( \vec{d} \) is perpendicular to \( \vec{a} + \vec{b} + \vec{c} \). ### Step 2: Use the Perpendicular Condition Since \( \vec{d} \) is perpendicular to \( \vec{a} + \vec{b} + \vec{c} \), we can express this condition using the dot product: \[ \vec{d} \cdot (\vec{a} + \vec{b} + \vec{c}) = 0 \] This can be expanded as: \[ \vec{d} \cdot \vec{a} + \vec{d} \cdot \vec{b} + \vec{d} \cdot \vec{c} = 0 \] Let’s denote this as Equation (1). ### Step 3: Calculate \( \vec{d} \cdot \vec{a} \) Now, we compute \( \vec{d} \cdot \vec{a} \): \[ \vec{d} \cdot \vec{a} = \left( x (\vec{b} \times \vec{c}) + y (\vec{c} \times \vec{a}) + z (\vec{a} \times \vec{b}) \right) \cdot \vec{a} \] Using the properties of the dot product: - \( \vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{a} \cdot \vec{b} \times \vec{c} = \text{scalar triple product} = \vec{a} \cdot (\vec{b} \times \vec{c}) \) - \( \vec{a} \cdot (\vec{c} \times \vec{a}) = 0 \) (since \( \vec{a} \) is perpendicular to \( \vec{c} \times \vec{a} \)) - \( \vec{a} \cdot (\vec{a} \times \vec{b}) = 0 \) (since \( \vec{a} \) is perpendicular to \( \vec{a} \times \vec{b} \)) Thus, we have: \[ \vec{d} \cdot \vec{a} = x (\vec{a} \cdot (\vec{b} \times \vec{c})) + 0 + 0 = x (\vec{a} \cdot (\vec{b} \times \vec{c})) \] Let’s denote this as Equation (2). ### Step 4: Calculate \( \vec{d} \cdot \vec{b} \) Next, we compute \( \vec{d} \cdot \vec{b} \): \[ \vec{d} \cdot \vec{b} = \left( x (\vec{b} \times \vec{c}) + y (\vec{c} \times \vec{a}) + z (\vec{a} \times \vec{b}) \right) \cdot \vec{b} \] Using similar properties: - \( \vec{b} \cdot (\vec{b} \times \vec{c}) = 0 \) - \( \vec{b} \cdot (\vec{c} \times \vec{a}) = y (\vec{b} \cdot (\vec{c} \times \vec{a})) \) - \( \vec{b} \cdot (\vec{a} \times \vec{b}) = 0 \) Thus, we have: \[ \vec{d} \cdot \vec{b} = y (\vec{b} \cdot (\vec{c} \times \vec{a})) \] Let’s denote this as Equation (3). ### Step 5: Calculate \( \vec{d} \cdot \vec{c} \) Now, we compute \( \vec{d} \cdot \vec{c} \): \[ \vec{d} \cdot \vec{c} = \left( x (\vec{b} \times \vec{c}) + y (\vec{c} \times \vec{a}) + z (\vec{a} \times \vec{b}) \right) \cdot \vec{c} \] Using similar properties: - \( \vec{c} \cdot (\vec{b} \times \vec{c}) = 0 \) - \( \vec{c} \cdot (\vec{c} \times \vec{a}) = 0 \) - \( \vec{c} \cdot (\vec{a} \times \vec{b}) = z (\vec{c} \cdot (\vec{a} \times \vec{b})) \) Thus, we have: \[ \vec{d} \cdot \vec{c} = z (\vec{c} \cdot (\vec{a} \times \vec{b})) \] Let’s denote this as Equation (4). ### Step 6: Combine the Results Now, substituting Equations (2), (3), and (4) into Equation (1): \[ x (\vec{a} \cdot (\vec{b} \times \vec{c})) + y (\vec{b} \cdot (\vec{c} \times \vec{a})) + z (\vec{c} \cdot (\vec{a} \times \vec{b})) = 0 \] This can be rewritten as: \[ x + y + z = 0 \] This implies that: \[ X + Y + Z = 0 \] ### Step 7: Conclusion Since \( \vec{a}, \vec{b}, \vec{c} \) are non-coplanar, the scalar triple product \( \vec{a} \cdot (\vec{b} \times \vec{c}) \) is non-zero. Therefore, we conclude that: \[ X + Y + Z = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    VMC MODULES ENGLISH|Exercise Numerical ValueType for JEE Main|15 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise JEE MAIN (ARCHIVE)|60 Videos
  • VECTORS

    VMC MODULES ENGLISH|Exercise LEVEL -1|90 Videos
  • TRIGONOMETRIC IDENTITIES AND EQUATIONS

    VMC MODULES ENGLISH|Exercise JEE Advanced (Archive)|11 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb, and vecc be three non- coplanar vectors and vecd be a non -zero , which is perpendicular to (veca + vecb + vecc). Now vecd = (veca xx vecb) sin x + (vecb xx vecc) cos y + 2 (vecc xx veca) . Then

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a non zero vector which is perpendicular to veca+vecb+vecc and is represented as vecd=x(vecaxxvecb)+y(vecbxxvecc)+z(veccxxveca) . Then,

if veca + vecb + vecc=0 , then show that veca xx vecb = vecb xx vecc = vecc xx veca .

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

veca,vecb,vecc are three non-coplanar such that veca + vecb + vecc = alpha vecd and vecb + vecc + vecd = beta veca , then veca + vecb + vecc + vecd is equal to:

If vectors, vecb, vecc and vecd are not coplanar, the prove that vector (veca xx vecb) xx (vecc xx vecd) + ( veca xx vecc) xx (vecd xx vecb) + (veca xx vecd) xx (vecb xx vecc) is parallel to veca .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

Let veca, vecb , vecc be non -coplanar vectors and let equations veca', vecb', vecc' are reciprocal system of vector veca, vecb ,vecc then prove that veca xx veca' + vecb xx vecb' + vecc xx vecc' is a null vector.

VMC MODULES ENGLISH-VECTORS -LEVEL -2
  1. Let hata and hatb be mutually perpendicular unit vectors. Then for an...

    Text Solution

    |

  2. Let veca, vecb,vecc be unit vectors, equally inclined to each other at...

    Text Solution

    |

  3. Let veca,vecb,vecc be three non coplanar and vecdbe a vector which is ...

    Text Solution

    |

  4. If veca, vecb, vecc are unit vectors, then |veca-vecb|^2+|vecb-vecc|^2...

    Text Solution

    |

  5. Let veca, vecb and vecc be three non- coplanar vectors and vecr be any...

    Text Solution

    |

  6. If vecu and vecv be unit vectors. If vecw is a vector such that vecw+(...

    Text Solution

    |

  7. When a right handed rectangular Cartesian system OXYZ is rotated about...

    Text Solution

    |

  8. If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr...

    Text Solution

    |

  9. Given a cube ABCD A(1)B(1)C(1)D(1) which lower base ABCD, upper base A...

    Text Solution

    |

  10. Let veca, vecb, vecc be three non-zero non coplanar vectors and vecp, ...

    Text Solution

    |

  11. If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vec...

    Text Solution

    |

  12. I' is the incentre of DeltaABC whose corresponding sides are a,b,c res...

    Text Solution

    |

  13. Consider a tetrahedron with faces F(1),F(2),F(3),F(4). Let vec(V(1)), ...

    Text Solution

    |

  14. find all the possible triplets (a(1), a(2), a(3)) such that a(1)+a(2) ...

    Text Solution

    |

  15. In triangle ABC if bar(AB) =u/(|bar u|)-v/(|bar v|) and bar(AC)=(2bar...

    Text Solution

    |

  16. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  17. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  18. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |

  19. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  20. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |