Home
Class 11
MATHS
lim(xrarr0) (sinax)/(bx)...

`lim_(xrarr0) (sinax)/(bx)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin(ax)}{bx} \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin(ax)}{bx} \] ### Step 2: Factor out Constants We can factor out the constant \( b \) from the denominator: \[ = \lim_{x \to 0} \frac{1}{b} \cdot \frac{\sin(ax)}{x} \] ### Step 3: Multiply and Divide by \( a \) Next, we multiply and divide the numerator by \( a \): \[ = \frac{1}{b} \cdot \lim_{x \to 0} \frac{\sin(ax)}{ax} \cdot a \] ### Step 4: Apply the Limit Property We know from the limit property that: \[ \lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1 \] Thus, we can substitute \( \theta = ax \): \[ = \frac{1}{b} \cdot a \cdot \lim_{x \to 0} \frac{\sin(ax)}{ax} = \frac{1}{b} \cdot a \cdot 1 \] ### Step 5: Simplify the Expression Now we simplify the expression: \[ = \frac{a}{b} \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b} \] ---

To solve the limit \( \lim_{x \to 0} \frac{\sin(ax)}{bx} \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin(ax)}{bx} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX -13.2|11 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|30 Videos
  • LIMITS AND DERIVATIVES

    NAGEEN PRAKASHAN ENGLISH|Exercise EX-13H|10 Videos
  • INTRODUCTION OF THREE DIMENSIONAL GEOMETRY

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|6 Videos
  • LINEAR INEQUALITIES

    NAGEEN PRAKASHAN ENGLISH|Exercise MISCELLANEOUS EXERCISE|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinax)/(sinbx),a,bne0

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0) (sin ax+bx)/(ax+sin bx),ane0,bne0,a+bne 0

lim_(xrarr0)(|sinx|)/(x) is equal to

lim_(xrarr0)(sin5x)/(x) is equal to

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

lim_(xrarr0) (ax+b)/(cx+1)

lim_(xrarr0)x sec x

lim_(xrarr0)(sin(x)/(4))/(x)