Home
Class 12
MATHS
int(x^(e-1)-e^(x-1))/(x^e-e^x)dx...

`int(x^(e-1)-e^(x-1))/(x^e-e^x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^{e-1} - e^{x-1}}{x^e - e^x} \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral for clarity: \[ \int \frac{x^{e-1} - e^{x-1}}{x^e - e^x} \, dx = \int \frac{x^{e-1} - \frac{e^x}{e}}{x^e - e^x} \, dx \] ### Step 2: Simplify the numerator We can factor out \( \frac{1}{e} \) from the numerator: \[ = \int \frac{1}{e} \cdot \frac{e x^{e-1} - e^x}{x^e - e^x} \, dx \] ### Step 3: Recognize the derivative Notice that the numerator \( e x^{e-1} - e^x \) is the derivative of \( x^e - e^x \). Thus, we can set: \[ t = x^e - e^x \] Then, the derivative \( dt \) is given by: \[ dt = (e x^{e-1} - e^x) \, dx \] ### Step 4: Substitute and change variables Now we can substitute \( dt \) into our integral: \[ \int \frac{1}{e} \cdot \frac{dt}{t} \] ### Step 5: Integrate The integral of \( \frac{1}{t} \) is: \[ \frac{1}{e} \ln |t| + C \] ### Step 6: Substitute back for \( t \) Substituting back for \( t \): \[ = \frac{1}{e} \ln |x^e - e^x| + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^{e-1} - e^{x-1}}{x^e - e^x} \, dx = \frac{1}{e} \ln |x^e - e^x| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7f|24 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7d|38 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(x-1)+x^(e-1))/(e^x+x^e)dx

Find the value of integral A=int_(-a)^(a)(e^(x))/(1+ e^x)dx

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

(11) int_(0)^(1)(e^x-e^-x)/(e^x+e^-x)dx

Evaluate the following: (i) int(sec^(2)x)/(3+tanx)dx " (ii) " int(e^(x)-e^(-x))/(e^(x)+e^(-x))dx (iii) int(1-tanx)/(1+tanx)dx " (iv) " int(1)/(1+e^(-x))dx

Evaluate : int (e^(x)-e^(-x))/(e^(x)+e^(-x))dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))\ dx

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))