Home
Class 12
MATHS
int(x^(2) +1)/((x+1))dx...

`int(x^(2) +1)/((x+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \frac{x^2 + 1}{x + 1} \, dx\), we will follow these steps: ### Step 1: Rewrite the integrand First, we can rewrite the integrand by performing polynomial long division. We divide \(x^2 + 1\) by \(x + 1\). \[ x^2 + 1 = (x + 1)(x - 1) + 2 \] This means we can express the integrand as: \[ \frac{x^2 + 1}{x + 1} = x - 1 + \frac{2}{x + 1} \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \frac{x^2 + 1}{x + 1} \, dx = \int (x - 1) \, dx + \int \frac{2}{x + 1} \, dx \] ### Step 3: Integrate each part Now we will integrate each part separately. 1. For the first integral \(\int (x - 1) \, dx\): \[ \int (x - 1) \, dx = \frac{x^2}{2} - x \] 2. For the second integral \(\int \frac{2}{x + 1} \, dx\): \[ \int \frac{2}{x + 1} \, dx = 2 \ln |x + 1| \] ### Step 4: Combine the results Now we combine the results of the two integrals: \[ \int \frac{x^2 + 1}{x + 1} \, dx = \left(\frac{x^2}{2} - x\right) + 2 \ln |x + 1| + C \] where \(C\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{x^2 + 1}{x + 1} \, dx = \frac{x^2}{2} - x + 2 \ln |x + 1| + C \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7g|31 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7h|15 Videos
  • INTEGRATION

    NAGEEN PRAKASHAN ENGLISH|Exercise Exercise 7e|16 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise|18 Videos
  • INVERES TRIGONOMETRIC FUNCTIONS

    NAGEEN PRAKASHAN ENGLISH|Exercise Miscellaneous Exercise (prove That )|9 Videos

Similar Questions

Explore conceptually related problems

(5) int(x^(2)-1)/(x(2x-1))dx

(5) int(x^(2)-1)/(x(2x-1))dx

Evaluate: int(x^2+x+1)/((x-1)^3)dx

Evaluate: int(x^2+x+1)/((x-1)^3)dx

Evaluate: int(x^2+1)/((x+1)^2)\ dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate : int(1-x^(2))/(x(1-x)) dx.

int_(1)^(2) (1)/(x(1+x))dx