Home
Class 12
MATHS
If |z1|=|z2| then z1/z2+z2/z1= (A) 2co...

If `|z_1|=|z_2|` `then` `z_1/z_2+z_2/z_1=` (A) `2costheta` (B) `-2costheta` (C) `2sintheta` (D) `-2sintheta`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

If z_1,z_2,z_3,z_4 be the vertices of a quadrilaterla taken in order such that z_1+z_2-z_2+z_3 and |z_1-z_3|=|z_2-z_4| then arg ((z_1-z_2)/(z_3-z_2))= (A) pi/2 (B) +- pi/2 (C) pi/3 (D) pi/6

If |z_1-1|<1 , |z_2-2|<2 , |z_3-3|<3 then |z_1+z_2+z_3|

If z_1 and z_2 are two complex numbers for which |(z_1-z_2)(1-z_1z_2)|=1 and |z_2|!=1 then (A) |z_2|=2 (B) |z_1|=1 (C) z_1=e^(itheta) (D) z_2=e^(itheta)

If |z_1+z_2|=|z_1-z_2| and |z_1|=|z_2|, then (A) z_1=+-iz_2 (B) z_1=z_2 (C) z_=-z_2 (D) z_2=+-iz_1

If z_1,z_2,z_3 be the vertices of a triangle ABC such that |z_1|=|z_2|=|z_3| and |z_1+z_2|^2= |z_1|^2+|z_2|^2, then |arg, ((z_3-z_1)/(z_3-z_2))|= (A) pi/2 (B) pi/3 (C) pi/6 (D) pi/4

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

(v) |(z_1)/(z_2)|=|z_1| /|z_2|

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these