Home
Class 12
MATHS
Suppose that f(x) isa quadratic expresso...

Suppose that `f(x)` isa quadratic expresson positive for all real `xdot` If `g(x)=f(x)+f^(prime)(x)+f^(prime prime)(x),` then for any real `x

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose that f(x) is a quadratic expresson positive for all real xdot If g(x)=f(x)+f^(prime)(x)+f^(primeprime)(x), then for any real x (where f^(prime)(x) and f^(primeprime)(x) represent 1st and 2nd derivative, respectively). (a) g(x) 0 (c). g(x)=0 (d). g(x)geq0

Suppose that f(x) is a quadratic expresson positive for all real xdot If g(x)=f(x)+f'(x)+f''(x), then for any real x(w h e r ef'(x)a n df''(x) represent 1st and 2nd derivative, respectively). a. g(x) 0 c. g(x)=0 d. g(x)geq0

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

If f(x)=x|x|, then prove that f^(prime)(x)=2|x|

Write a value of inte^(a x)\ {a\ f\ (x)+f^(prime)(x)}\ dx

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|x|^(|sinx|), then find f^(prime)(-pi/4)

If f(x)=|cosx-sinx| ,find f^(prime)(pi/6) and f^(prime)(pi/3)dot