Home
Class 12
MATHS
Prove that int-a^a xf(x^4)dx=0...

Prove that `int_-a^a xf(x^4)dx=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_-2^2 f(x^4)dx=2int_0^2 f(x^4)dx

If f is an integrable function, show that int_(-a)^a xf(x^2)dx=0

If f(a+b-x)=f(x),\ then prove that \ int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dx

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dxdot

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dxdot

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx=(a+b)/2int_a^bf(x)dxdot

If f(a+b-x)=f(x) , then prove that int_a^b xf(x)dx=((a+b)/2)int_a^bf(x)dxdot

If f(a+b-x)=f(x), then prove that int_a^b xf(x)dx =(a+b)/2int_a^bf(x)dxdot

Prove that int_(0)^(2a)f(x)dx=int_(0)^(a)[f(a-x)+f(a+x)]dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx