Home
Class 12
MATHS
If A+B+C=pi, express S=sin3A+sin3B+sin3C...

If `A+B+C=pi,` express `S=sin3A+sin3B+sin3C` as a product of three trigonometric ratios. If `S=0,` Show that at least one of the angles is `60^@.`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi then sin2A+sin2B+sin2C=

Find the values of the following trigonometric ratio: sin ((5pi)/3) .

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

In a /_\A B C , right angled at B , if A B=4 and B C=3 , find all the six trigonometric ratios of /_A .

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

In a Delta A B C ,\ ifsin^2A+sin^2B=sin^2C , show that the triangle is right angled.

If A+B+C=180^0,\ then s e c A(cos B cos C-sin B sin C) is equal to:

Show that Rr (sin A+sin B + sin C) =Delta

Express each of the following in terms of trigonometric ratios of angles between 0 and 45 : (i) sin81 + tan81 (ii) sin72 + cot72

In /_\ABC , if sin A= 1/3 and sin B= 1/4 , sin C=