Home
Class 12
MATHS
let cos(pi/7),cos((3pi)/7),cos((5pi)/7),...

let `cos(pi/7),cos((3pi)/7),cos((5pi)/7),`the roots of equation `8x^3 - 4x^2 - 4x +1=0` then the value of `sin(pi/14),sin((3pi)/14),sin((5pi)/14)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

cos(pi/14)+cos((3pi)/14)+cos((5pi)/14)=kcot(pi/14) then k is equal to

The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Find the real roots of the equation cos^4x + sin^7x = 1 in the interval [-pi,pi]

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2