Home
Class 12
MATHS
If 4ntheta = pi , then sin^2 theta+ sin^...

If 4n`theta` = `pi` , then `sin^2 theta+ sin^2 3theta + sin^2 5theta +.... 2n` terms is equal to:(1) ` n`, (2) ` 2n` . (3) `3n` (4) `n^2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

Solve the equation sin^(2)ntheta - sin^(2)(n-1)theta = sin^(2)theta

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

Sum ot n terms the series sin^3theta+sin^3 3theta+sin^3 5 theta+…

If sin^(3) theta+sin theta cos theta+ cos^(3) theta=1 , then theta is equal to (n in Z)

For all n in N, cos theta cos 2theta cos 4theta ....cos2^(n-1)theta equals to

Sum to terms of the series sintheta sin2theta + sin2thetasin3theta + sin3theta sin4theta +..... is equal to

If sin^3theta+sinthetacos^2theta=1,t h e ntheta is equal to (n in Z) (a) 2npi (b) 2npi+pi/2 (c) 2npi-pi/2 (d) npi

If tan theta +sin theta =m and tan theta -sin theta =n then prove m^2-n^2=4sqrt(mn)

Prove that sin^2 theta+sin^2 2theta+sin^2 3theta+....+sin^2 n theta=n/2-(sin n theta cos(n+1)theta)/(2sin theta)