Home
Class 12
MATHS
With usual notations, if in a triangle A...

With usual notations, if in a triangle `A B C(b+c)/(11)=(c+a)/(12)=(a+b)/(13)` , then prove that: `(cosA)/7=(cosB)/(19)=(cosC)/(25)`

Promotional Banner

Similar Questions

Explore conceptually related problems

With usual notion, if in triangle A B C , (b+c)/(11)=(c+a)/(12)=(a+b)/(13),t h e np rov et h a t (cosA)/7=(cosB)/(19)=(cosC)/(25)

In a triangle ABC , if (b+c)/(11)=(c+a)/(12)=(a+b)/(13) , then cos A=

With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = (a+b)/(13) , then cos A : cos B : cos C is :

In any DeltaA B C ,(b+c)/(12)=(c+a)/(13)=(a+b)/(15),\ then prove that (cos A)/2=(cos B)/7=(cos C)/(11)dot

If in a triangle ABC , (b+c)/11=(c+a)/12=(a+b)/13 then cosA is equal to

Prove that : (a b c)/scosA/2cosB/2cosC/2=

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In DeltaABC , prove that: (c-bcosA)/(b-c (cosA))=(cosB)/(cosC)

Prove that (b+c)cosA+(c+a)cosB+(a+b)cosC=2sdot

In DeltaABC , prove that: a(cosC-cosB)=2(b-c)cos^(2)A/2