Home
Class 11
MATHS
The equation (cosp-1)x^2+(cos p)x+sin p=...

The equation `(cosp-1)x^2+(cos p)x+sin p=0` in the variable `x` has real roots. The `p` can take any value in the interval (a)`(0,2pi)` (b) `(-pi,0)` (c) `(-pi/2,pi/2)` (d) `(0,pi)`

Promotional Banner

Similar Questions

Explore conceptually related problems

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

If | vec a+ vec b|<| vec a- vec b|, then the angle between vec aa n d vec b can lie in the interval a. (pi//2,pi//2) b. (0,pi) c. (pi//2,3pi//2) d. (0,2pi)

Let 2sin^2x+3sinx-2>0 andx^2-x-2<0(x is measured in radians). Then x lies in the interval (a) (pi/6,(5pi)/6) (b) (-1,(5pi)/6) (c) (-1,2) (d) (pi/6,2)

If the equation sin ^(2) x - k sin x - 3 = 0 has exactly two distinct real roots in [0, pi] , then find the values of k .

The value of the definite integral int_0^(pi/2)(sin5x)/(sinx)dxi s 0 (b) pi/2 (c) pi (d) 2pi

The range of f(x)=sin^(-1)(sqrt(x^2+x+1))i s (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The number of distinct of real roots of the equation tan^(2)2x+2tan2x tan3x-1=0 in the interval [0,(pi)/(2)] is

Find the number of real solution of the equation (cos x)^(5)+(sin x)^(3)=1 in the interval [0, 2pi]

If the equation 2^((2pi)/cos^(-1)x)-(a+1/2)2^((pi)/cos^(-1)x-a^2=0 has exactly one real solution the range of a is equal to