Home
Class 11
MATHS
Evaluate: ("lim")(xrarr0) (sin[cosx])/(...

Evaluate: `("lim")_(xrarr0)` `(sin[cosx])/(1+[cosx])([dot]` denotes the greatest integer function).

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: ("lim")_(xrarr0)(sinx^0)/x

Evaluate: lim_(xrarr0)x^x

Evaluate the limit ("lim")_(xrarr0)(sin3x)/x

lim_(xrarr0) [(sin^(-1)x)/(tan^(-1)x)]= (where [.] denotes the greatest integer function)

Evaluate ("lim")_(xvec0) (sinx-2)/(cosx-1)

Evaluate : lim_(xrarr0)(tanx)/(x)

Evaluate : ("lim")_(xrarr2^+) ([x-2])/("log"(x-2)) , where [.] represents the greatest integer function.

Evaluate : lim_(xrarr0)(sin4x)/(sin2x)

Evaluate ("lim")_(xvec(5pi)/4) [sinx+cosx], where [.] denotes the greatest integer function.

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)