Home
Class 11
MATHS
If a b^2c^3, a^2b^3c^4,a^3b^4c^5 are in...

If `a b^2c^3, a^2b^3c^4,a^3b^4c^5` are in A.P. `(a ,b ,c >0),` then the minimum value of `a+b+c` is (a)`1` (b)`3` (c)`5` (d)`9`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a , b , c are real numbers forming an A.P. and 3+a , 2+b , 3+c are in G.P. , then minimum value of ac is

If a ,b ,c ,d ,e are in A.P., the find the value of a-4b+6c-4d+edot

If a,b,c are in H.P , b,c,d are in G.P and c,d,e are in A.P. , then the value of e is

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

Let a, b, c be in an AP and a^2, b^2, c^2 be in GP. If a < b < c and a + b+ c=3/2 then the value of a is

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c,in R^(+) , such that a+b+c=18 , then the maximum value of a^2,b^3,c^4 is equal to

If a^2+b^2,a b+b c ,a n db^2+c^2 are in G.P., then a ,b ,c are in a. A.P. b. G.P. c. H.P. d. none of these

If (b-c)^2,(c-a)^2,(a-b)^2 are in A.P., then prove that 1/(b-c),1/(c-a),1/(a-b) are also in A.P.