Home
Class 11
MATHS
In A B C , the coordinates of B are (0,...

In ` A B C ,` the coordinates of `B` are `(0,0),A B=2,/_A B C=pi/3,` and the middle point of `B C` has coordinates `(2,0)dot` The centroid o the triangle is
(a)`(1/2,(sqrt(3))/2)` (b) `(5/3,1/(sqrt(3)))` (c) `(4+(sqrt(3))/3,1/3)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

The incenter of the triangle with vertices (1,sqrt(3)),(0,0), and (2,0) is (a) (1,(sqrt(3))/2) (b) (2/3,1/(sqrt(3))) (c) (2/3,(sqrt(3))/2) (d) (1,1/(sqrt(3)))

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

The value of cot70^0+4cos70^0 is (a) 1/(sqrt(3)) (b) sqrt(3) (c) 2sqrt(3) (d) 1/2

In A B C , if the orthocentre is (0,0) and the circumcenter is (1,2), then centroid of A B C) is (a) (1/2,2/3) (b) (1/3,2/3) (c) (2/3,1) (d) none of these

If A(1,p^2),B(0,1) and C(p ,0) are the coordinates of three points, then the value of p for which the area of triangle A B C is the minimum is 1/(sqrt(3)) (b) -1/(sqrt(3)) 1/(sqrt(2)) (d) none of these

If y=|cosx|+|sinx|,t h e n(dy)/(dx)a tx=(2pi)/3 is (1-sqrt(3))/2 (b) 0 (c) 1/2(sqrt(3)-1) (d) none of these

If tan^(-1)(a+x)/a+tan^(-1)(a-x)/a=pi/6,t h e nx^2= (a) 2sqrt(3)a (b) sqrt(3)a (c) 2sqrt(3)a^2 (d) none of these

If the vertices of a triangle are (sqrt(5,)0) , ( sqrt(3),sqrt(2)) , and (2,1) , then the orthocentre of the triangle is (sqrt(5),0) (b) (0,0) (c) (sqrt(5)+sqrt(3)+2,sqrt(2)+1) (d) none of these

In A B C ,a=5,b=12 ,c=90^0a n dD is a point on A B so that /_B C D=45^0dot Then which of the following is not true? C D=(60sqrt(2))/(17) (b) B D=(65)/(17) A D=(60sqrt(2))/(17) (d) none of these