Home
Class 11
MATHS
A triangle is formed by the lines x+y=0,...

A triangle is formed by the lines `x+y=0,x-y=0,` and `l x+m y=1.` If `l` and `m` vary subject to the condition `l^2+m^2=1,` then the locus of its circumcenter is (a) `(x^2-y^2)^2=x^2+y^2` (b) `(x^2+y^2)^2=(x^2-y^2)` (c) `(x^2+y^2)^2=4x^2y^2` (d) `(x^2-y^2)^2=(x^2+y^2)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (x^2+y^2)^4=(x^4-6x^2y^2+y^4)^2+(4x^3y-4x y^3)^2dot

If points Aa n dB are (1, 0) and (0, 1), respectively, and point C is on the circle x^2+y^2=1 , then the locus of the orthocentre of triangle A B C is (a) x^2+y^2=4 (b) x^2+y^2-x-y=0 (c) x^2+y^2-2x-2y+1=0 (d) x^2+y^2+2x-2y+1=0

The locus of a point, from where the tangents to the rectangular hyperbola x^2-y^2=a^2 contain an angle of 45^0 , is (x^2+y^2)^2+a^2(x^2-y^2)=4a^2 2(x^2+y^2)^2+4a^2(x^2-y^(2))=4a^2 (x^2+y^2)^2+4a^2(x^2-y^2)=4a^2 (x^2+y^2)+a^2(x^2-y^(2))=a^4

The locus of the foot of the perpendicular from the center of the hyperbola x y=1 on a variable tangent is (x^2-y^2)=4x y (b) (x^2-y^2)=1/9 (x^2-y^2)=7/(144) (d) (x^2-y^2)=1/(16)

The line 2x+3y=5 , 2x+y=k , 2x-y-1=0

The lines 2x-3y=5 and 3x-4y=7 are the diameters of a circle of area 154 sq. units. Then the equation of the circle is (a) x^2+y^2+2x-2y=62 (b) x^2+y^2+2x-2y=47 (c) x^2+y^2-2x+2y=47 (d) x^2+y^2-2x+2y=62

Find the condition for the line y=m x to cut at right angles the conic a x^2+2h x y+b y^2=1.

Find the condition for the line y=m x to cut at right angles the conic a x^2+2h x y+b y^2=1.

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n (a) x^2+y^2+z^2+x y z=0 (b) x^2+y^2+z^2+2x y z=0 (c) x^2+y^2+z^2+x y z=1 (d) x^2+y^2+z^2+2x y z=1

Find the length of the common chord of the circles x^2+y^2+2x+6y=0 and x^2+y^2-4x-2y-6=0