Home
Class 12
MATHS
If the vectors vec a , vec b ,a n d vec...

If the vectors ` vec a , vec b ,a n d vec c` form the sides`B C ,C Aa n dA B ,` respectively, of triangle `A B C ,t h e n` (a)` vec a . vec b+ vec b . vec c+ vec c . vec a=0` (b)` vec axx vec b= vec bxx vec c= vec cxx vec a` (c) ` vec adot vec b= vec bdot vec c= vec c dot vec a` (d) ` vec axx vec b+ vec bxx vec c+ vec cxx vec a=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec a+2 vec b+3 vec c=0,t h e n vec axx vec b+ vec bxx vec c+ vec cxx vec a= 2( vec axx vec b) b. 6( vec bxx vec c) c. 3( vec cxx vec a) d. vec0

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=0

Let vec a , vec b ,a n d vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a]=[ vec a vec b vec c]^2dot

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

Prove that if the vectors vec a, vec b, vec c satisfy vec a+ vec b + vec c = vec 0 , then vec bxx vec c = vec c xx vec a = vec a xx vec b

If axx(bxxc)=(axxb)xxc , then ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) vec0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

If vec a , vec b ,a n d vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c|dot

The lines vec r= vec a+lambda( vec bxx vec c)a n d vec r= vec b+mu( vec cxx vec a) will intersect if a. vec axx vec c= vec bxx vec c b. vec adot vec c= vec bdot vec c c. bxx vec a= vec cxx vec a d. none of these

Prove that [ vec a, vec b, vec c + vec d] = [ vec a, vec b, vec c] + [ vec a, vec b , vec d] .

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a