Home
Class 12
MATHS
"If "=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((...

`"If "=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1," prove that "(y')/(y)=(1)/(x)((a)/(a-x)+(b)/(b-x)+(c)/(c-x)).`

Text Solution

Verified by Experts

`y=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(c)/(x-c)+1`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+((c+x-c)/(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx)/((x-b)(x-c))+(x)/(x-c)`
`=(ax^(2))/((x-a)(x-b)(x-c))+(bx+x(x-b))/((x-b)(x-c))`
`=(ax^(2))/((x-a)(x-b)(x-c))+(x^(2))/((x-b)(x-c))`
`=(ax^(2)+x^(2)(x-a))/((x-a)(x-b)(x-c))`
`=(x^(3))/((x-a)(x-b)(x-c))`
`therefore" "log y= log {(x^(3))/((x-a)(x-b)(x-c))}`
`"or "log y=3log x-{log(x-a)+log(x-b)+log(x-c)}`
On differentiating w.r.t. x, we get
`(1)/(y)(dy)/(dx)=(3)/(x)-{(1)/(x-a)+(1)/(x-b)+(1)/(x-c)}`
`"or "(dy)/(dx)=y{((1)/(x)-(1)/(x-a))+((1)/(x)-(1)/(x-b))+((1)/(x)-(1)/(x-c))}`
`=y{-(a)/(x(x-a))-(b)/(x(x-b))-(c)/(x(x-c))}`
`=(y)/(2){(a)/(a-x)+(b)/(b-x)+(c)/(x-c)}.`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.2|38 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|7 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=(ax^2)/((x-a)(x-b)(x-c))+(b x)/((x-b)(x-c))+c/(x-c)+1 , then prove that (y')/y=1/x[a/(a-x)+b/(b-x)+c/(c-x)]

Prove that x^((b-c)/(bc)) x^((c-a)/(ca)) x^((a-b)/(ab))=1

If y=|{:(f(x),g(x),h(x)),(l,m,n),(a,b,c):}| , prove that (dy)/(dx)=|{:(f'(x),g'(x),h'(x)),(l,m,n),(a,b,c):}| .

If f (x) = |(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0)| then

Prove that |(b+x)(c+x)(v+x)(a+x)(a+x)(b+x)(b+y)(c+y)(c+x)(a+t)(a+y)(b+y)(b+z)(c+z)(c+z)(a+z)(a+z)(b+z)|=(b-c)(c-a)(y-z)(x-y)dot

Prove that |((b+x)(c+x),(c+x)(a+x),(a+x)(b+x)),((b+y)(c+y),(c+y)(a+y),(a+y)(b+y)),((b+z)(c+z),(c+z)(a+z),(a+z)(b+z))|=(a-b)(b-c)(c-a)(x-y)(y-z)(z-x)dot

Simplify (x^(a-b))^(a+b).(x^(b-c))^(b+c).(x^(c-a))^(c+a)

Show that ((x+b)(x+c))/((b-a)(c-a))+((x+c)(x+a))/((c-b)(a-b))+((x+a)(x+b))/((a-c)(b-c))=1 is an identity.

The quadratic equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 has equal roots if