Home
Class 12
MATHS
Orthocenter of an equilateral triangle A...

Orthocenter of an equilateral triangle ABC is the origin O. If `vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc`, then `vec(AB)+2vec(BC)+3vec(CA)=`

A

`3vecc`

B

`3veca`

C

`vec0`

D

`3vecb`

Text Solution

Verified by Experts

The correct Answer is:
B

For an equilateral triangle, centroid is the same as orthocenter
`therefore (vec(OA) + vec(OB) + vec(OC))/(3) =vec0`
`therefore vec(OA)+vec(OB)+vec(OC) =vec0`
Now, `vec(AB) + 2vec(BC) + 3vec(CA)`
`=vec(OB) - vec(OA) +2vec(OC) - 2vec(OB) + 3vec(OA)-3vec(OC)`
`=-vec(OB) + 2vec(OA) -vec(OC)`
`=-(vec(OB) +vec(OA) +vec(OC))+3vec(OA)`
`=3vec(OA)`
`=3veca`
Promotional Banner

Topper's Solved these Questions

  • VECTORS TRIPLE PRODUCTS, RECIPROCAL SYSTEM OF VECTORS

    CENGAGE|Exercise DPP 2.4|20 Videos

Similar Questions

Explore conceptually related problems

If O( vec0 ) is the circumcentre and O' the orthocentre of a triangle ABC, then prove that i. vec(OA)+vec(OB)+vec(OC)=vec(OO') ii. vec(O'A)+vec(O'B)+vec(O'C)=2vec(O'O) iii. vec(AO')+vec(O'B)+vec(O'C)=2 vec(AO)=vec(AP) where AP is the diameter through A of the circumcircle.

If [veca+vecb, vecb+vec c, vec c+veca]=8 then [veca, vecb, vec c] is

If ABCDE is a pentagon then prove that vec(AB)+vec(AE)+vec(BC)+vec(DC)+vec(ED)+vec(AC)=3vec(AC)

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

The value of vec(AB)+vec(BC)+vec(DA)+vec(CD) is

ABCD is a quadrilateral and E is the point of intersection of the lines joining the middle points of opposite side. Show that the resultant of vec (OA) , vec(OB) , vec(OC) and vec(OD) = 4 vec(OE) , where O is any point.

If the vectors veca,vecb,vecc form the sides BC,CA and AB respectively of a triangle ABC then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) veca.vecb=vecc=vecc=veca.a!=0 (D) vecaxxvecb+vecbxxvecc+veccxxvecavec0

Statement 1: In "Delta"A B C , vec A B+ vec BC+ vec C A=0 Statement 2: If vec O A= vec a , vec O B= vec b ,t h e n vec A B= vec a+ vec b

If in a right-angled triangle A B C , the hypotenuse A B=p ,then vec(AB).vec(AC)+ vec(BC). vec(BA)+ vec(CA).vec(CB) is equal to 2p^2 b. (p^2)/2 c. p^2 d. none of these

CENGAGE-VECTORS; DEFINITION, GEOMETRY RELATED TO VECTORS-DPP 1.1
  1. ABCDEF is a regular hexagon in the x-y plance with vertices in the ant...

    Text Solution

    |

  2. Let position vectors of point A,B and C of triangle ABC represents be ...

    Text Solution

    |

  3. If D,E and F are the mid-points of the sides BC, CA and AB respectivel...

    Text Solution

    |

  4. If points (1,2,3), (0,-4,3), (2,3,5) and (1,-5,-3) are vertices of tet...

    Text Solution

    |

  5. The unit vector parallel to the resultant of the vectors 2hati+3hatj-h...

    Text Solution

    |

  6. ABCDEF is a regular hexagon. Find the vector vec AB + vec AC + vec AD ...

    Text Solution

    |

  7. If veca+vecb+vecc =0, |veca|=3, |vecb|=5, |vecc|=7 then the angle betw...

    Text Solution

    |

  8. If sum of two unit vectors is a unit vector; prove that the magnitude ...

    Text Solution

    |

  9. The position vectors of the points A,B, and C are hati+2hatj-hatk, hat...

    Text Solution

    |

  10. Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)...

    Text Solution

    |

  11. If the position vectors of P and Q are i + 3j - 7k and 5i - 2j + 4k th...

    Text Solution

    |

  12. The non zero vectors veca,vecb, and vecc are related byi veca=8vecb n...

    Text Solution

    |

  13. The unit vector bisecting vec(OY) and vec(OZ) is

    Text Solution

    |

  14. A unit tangent vector at t=2 on the curve x=t^(2)+2, y=4t-5 and z=2t^(...

    Text Solution

    |

  15. If veca and vecb are position vectors of A and B respectively, then th...

    Text Solution

    |

  16. Let veca=(1,1,-1), vecb=(5,-3,-3) and vecc=(3,-1,2). If vecr is collin...

    Text Solution

    |

  17. A line passes through the points whose position vectors are hati+hatj-...

    Text Solution

    |

  18. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |

  19. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |

  20. Three points A,B, and C have position vectors -2veca+3vecb+5vecc, veca...

    Text Solution

    |