Home
Class 12
MATHS
If A+B+C=pi,prove thatcot(A/2)+cot(B/2)+...

If A+B+C=`pi`,prove that`cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)`

Text Solution

Verified by Experts

Since, A + B + C = `pi`
`implies (A)/(2) + (B)/(2) = (pi)/(2) - (C)/(2)`
`implies cot ((A)/(2)+(B)/(2))=cot((pi)/(2)-(C)/(2))`
`implies (cot.(A)/(2).cot.(B)/(2)-1)/(cot.(B)/(2)+cot.(A)/(2))=tan.(C)/(2)`
`implies cot.(A)/(2).cot.(B)/(2).cot.(C)/(2)-cot.(C)/(2)=cot.(A)/(2)+cot.(B)/(2)`
`implies cot.(A)/(2)+cot.(B)/(2)+cot.(C)/(2)=cot.(A)/(2)cot.(B)/(2)cot.(C)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

In a triangle ABc , if r^2cot(A/2) cot(B/2) cot(C/2)=

Prove that (b + c -a) (cot.(B)/(2) + cot.(C)/(2)) = 2a cot.(A)/(2)

If x , ya n dz are the distances of incenter from the vertices of the triangle A B C , respectively, then prove that (a b c)/(x y z)=cot(A/2)cot(B/2)cot(C/2)

In triangle ABC, if |[1,1,1], [cot (A/2), cot(B/2), cot(C/2)], [tan(B/2)+tan(C/2), tan(C/2)+ tan(A/2), tan(A/2)+ tan(B/2)]| then the triangle must be (A) Equilateral (B) Isoceless (C) Right Angle (D) none of these

Prove that cot (A + B) = (cot A cot B - 1)/(cot A + cot B)

cot^(2) x + tan^(2) x

Solve cot(x//2)-cosec (x//2)=cot x .

(sin2A+sin2B+sin2C)/(sinA+sinB+sinC)i se q u a lto 8sin(A/2)sin(B/2)sin(C/2) (b) 8cos(A/2)cos(B/2)cos(C/2) 8tan(A/2)tan(B/2)tan(C/2) (d) 8cot(A/2B)/2cot(C/2)

Prove that cosecA-2 cot 2A cos A=2sinA.