Home
Class 12
MATHS
The equation (cosp-1)^x^2+(cos p)x+s in ...

The equation `(cosp-1)^x^2+(cos p)x+s in p=0` in the variable `x` has real roots. The `p` can take any value in the interval `(0,2pi)` (b) `(-pi)` (c) `(-pi/2,pi/2)` (d) `(,pi)`

A

`(0,2pi)`

B

`(-pi,0)`

C

`(-(pi)/(2),(pi)/(2))`

D

`(0,pi)`

Text Solution

Verified by Experts

The correct Answer is:
d

Since, the given quadratic equation
`" " (cos p - 1)x^(2) + (cos p) x + sin p = 0 `
has real roots.
` therefore ` Discriminant, `cos ^(2) p - 4 sin p(cos p - 1 ) ge 0 `
` rArr (cos p - 2 sin p ) ^(2) - 4 sin p(1 - sin p ) ge 0 `
` because " " 4 sin p ( 1- sin p ) gt 0 for 0 lt p lt pi `
and `" " (cos p - 2 sin p )^(2) ge 0 `
Thus, ` (cos p - 2 sin p ) ^(2) + 4 sin p (1 - sin p) ge 0 `
for `" " 0 lt p lt pi `.
Hence, the equations has real for `0 lt p lt pi `
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation (cosp-1)x^2+(cos p)x+sin p=0 in the variable x has real roots. The p can take any value in the interval (a) (0,2pi) (b) (-pi,0) (c) (-pi/2,pi/2) (d) (0,pi)

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

Let 2sin^2x+3sinx-2>0 andx^2-x-2<0(x is measured in radians). Then x lies in the interval (a) (pi/6,(5pi)/6) (b) (-1,(5pi)/6) (c) (-1,2) (d) (pi/6,2)

If | vec a+ vec b|<| vec a- vec b|, then the angle between vec aa n d vec b can lie in the interval a. (pi//2,pi//2) b. (0,pi) c. (pi//2,3pi//2) d. (0,2pi)

Let f:(-1,1)rarrB be a function defined by f(x)=tan^(-1)[(2x)/(1-x^2)] . Then f is both one-one and onto when B is the interval. (a) [0,pi/2) (b) (0,pi/2) (c) (-pi/2,pi/2) (d) [-pi/2,pi/2]

The value of the definite integral int_0^(pi/2)(sin5x)/(sinx)dxi s 0 (b) pi/2 (c) pi (d) 2pi

The range of f(x)=sin^(-1)(sqrt(x^2+x+1))i s (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

Find the number of real solution of the equation (cos x)^(5)+(sin x)^(3)=1 in the interval [0, 2pi]

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

If the equation sin ^(2) x - k sin x - 3 = 0 has exactly two distinct real roots in [0, pi] , then find the values of k .