Home
Class 12
MATHS
Let L1 be the line r1=2hat(i)+hat(j)-hat...

Let `L_1` be the line `r_1=2hat(i)+hat(j)-hat(k)+lambda(hat(i)+2hat(k))` and let `L_2` be the another line `r_2=3hat(i)+hat(j)+mu(hat(i)+hat(j)-hat(k))`. Let `phi` be the plane which contains the line `L_1` and is parallel to the `L_2`. The distance of the plane` phi` from the origin is

A

`sqrt((2)/(7))`

B

`(1)/(7)`

C

`sqrt(6)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
(a)
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the pairs of line r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) and hat(r)=5hat(i)-2hat(j)+mu(3hat(i)+2hat(j)+6hat(k)) .

Find the angle between the pair of lines r=3hat(i)+2hat(j)-4hat(k)+lambda(hat(i)+2hat(j)+2hat(k)) r=5hat(i)-4hat(k)+mu(3hat(i)+2hat(j)+6hat(k))

The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-hat(j)+4hat(k)) and the plane rcdot(hat(i)+5hat(j)+hat(k))=5, is

Equation of the plane that contains the lines r=(hat(i)+hat(j))+lambda(hat(i)+2hat(j)-hat(k)) and , r=(hat(i)+hat(j))+mu(-hat(i)+hat(j)-2hat(k)) is

A vector equally inclined to the vectors hat(i)-hat(j)+hat(k) and hat(i)+hat(j)-hat(k) then the plane containing them is

The line whose vector equation are r=2hat(i)-3hat(j)+7hat(k)+lambda(2hat(i)+phat(j)+5hat(k)) and r=hat(i)+2hat(j)+3hat(k)+mu(3hat(i)-phat(j)+phat(k)) are perpendicular for all values of lambda and mu if p eqauls to

The points hat(i)-hat(j)+3hat(k) and 3hat(i)+3hat(j)+3hat(k) are equidistant from the plane rcdot(5hat(i)+2hat(j)-7hat(k))+9=0 , then they are

The co-ordinate of the point P on the line r=(hat(i)+hat(j)+hat(k))+lambda(-hat(I)+hat(j)-hat(k)) which is nearest to the origin is

Find the angle between vec(P) = - 2hat(i) +3 hat(j) +hat(k) and vec(Q) = hat(i) +2hat(j) - 4hat(k)

Find the angle between the line vec r= hat i+2 hat j- hat k+lambda( hat i- hat j+ hat k) and the plane vec r .(2 hat i- hat j+ hat k)=4.