Home
Class 12
MATHS
x=acos^(3)theta,y=asin^(3)theta then fin...

`x=acos^(3)theta,y=asin^(3)theta` then find `(d^(2)y)/(dx^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(3a)sec^(4)thetacosectheta`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the slope of the normal to the curve x = a cos^(3)theta, y=a sin^(3)theta at theta = (pi)/(4) .

x=a sin t and y= a (cos t + log "tan"(t)/(2)) then find (d^(2)y)/(dx^(2)) .

If x=asec^3thetaa n dy=atan^3theta ,find (dy)/(dx) at theta=pi/3dot

If x +y= 3-cos4theta and x-y=4sin2theta then

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x= t^(2) and y= t^(3) , then (d^(2)y)/(dx^(2)) is equal to

Find (dy)/(dx) : x=2 cos theta- cos^(2) theta and y=2 sin theta- sin 2theta Show that (dy)/(dx)= -1 " when " theta = (pi)/(2)

If y=Acos(logx)+B sin(logx) then prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0 .