Home
Class 11
CHEMISTRY
Does co-volume represent the actual volu...

Does co-volume represent the actual volume of the molecules in a gas ?

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Is the excluded volume of a real gas equal to the actual E volume of the molecules of a gas ?

Why excluded volume v is four times the actual volume of molecules?

In the van der Waals equation (P + (n^(2)a)/(V^(2)))(V - nb) = nRT the constant a reflects the actual volume of the gas molecules.

In the van der Waals equation (P + (n^(2)a)/(V^(2)))(V - nb) = nRT the constant a reflects the actual volume of the gas molecules.

The excluded volume of molecule in motion is ……….. times, the actual volume of a molecule in rest

The diameter of an oxygen molecule is 3 Ã… The ratio of molecular volume to the actual volume occupied by the oxygen gas at STP is

The main reason for deviation of gases from ideal behaviour is few assumptions of kinetic theory . These are (i) there is no force of attraction between the molecules of a gas (ii) volume of the molecules of a gas is negligibly small in comparison to the volume of the gas (iii) particles of a gas are always in constant random motion .

Ideal gas equation is represented as PV=nRT . Gases present in universe were fond ideal in the Boyle's temperature range only and deviated more from ideal gas behavior at high pressure and low temperature. The deviation are explained in term of compressibility factor z . For ideal behavior Z=(PV)/(nRT)=1 . the main cause to show deviavtion were due to wrong assumptions made about forces oif attractions (which becomes significant at high pressure ) and volume V occupied by molecules in PV=nRT is supposed to be volume of gas or the volume of container in which gas is placed by assuming that gaseous molecules do not have appreciable volume. Actually volume of the gas is that volume in which each molecule of gas can move freely. If volume occupied by gaseous molecule is not negligible, then the term V would be replaced by the ideal volume which by available for free motion of each molecule of gas in 1 mole gas. V_("actual")= volume of container -volume occupied by molecules =v-b Where b represent the excluded volume occupied by molecules present in one mole of gas. Similarly for n mole gas V_("actual")=v-nb The ratio of coefficient of thermal expansion alpha=(((delV)/(delT))_(P))/V and the isothermal compressibility beta=-((delV)/(delP)_(T)) for an ideal gas is:

Ideal gas equation is represented as PV=nRT . Gases present in universe were fond ideal in the Boyle's temperature range only and deviated more from ideal gas behavior at high pressure and low temperature. The deviation are explained in term of compressibility factor z . For ideal behavior Z=(PV)/(nRT)=1 . the main cause to show deviavtion were due to wrong assumptions made about forces oif attractions (which becomes significant at high pressure ) and volume V occupied by molecules in PV=nRT is supposed to be volume of gas or the volume of container in which gas is placed by assuming that gaseous molecules do not have appreciable volume. Actually volume of the gas is that volume in which each molecule of gas can move freely. If volume occupied by gaseous molecule is not negligible, then the term V would be replaced by the ideal volume which by available for free motion of each molecule of gas in 1 mole gas. V_("actual")= volume of container -volume occupied by molecules =v-b Where b represent the excluded volume occupied by molecules present in one mole of gas. Similarly for n mole gas V_("actual")=v-nb As the pressure approaching zero i.e. at very low pressure. The curves plotted between compressibility factor Z and P for n mole of gases have the following characteristics. (I) The intercept on y -axis leads to a value of unity (II) The intercept on y axis leads to a value of 'n' (III) The curves posses same slope for different gases at same temperature (IV) The curves posses different slopes for different gases at same temperature. (V) The curves posses same slope for a gas at different temperature

Assertion: The heat absorbed during the isothermal expansion of an ideal gas against vacuum is zero. Reason: The volume occupied by the molecules of an ideal gas is zero.