Home
Class 12
MATHS
If xi>0 i=1,2,3,...50 x1+x2...+x50=50 th...

If `x_i>0` i=1,2,3,...50 `x_1+x_2...+x_50=50` then the minimum value of `1/(x_1) +1/(x_2) +...+1/(x_50)` equals

A

50

B

`(50)^(2)`

C

`(50)^(3)`

D

`(50)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_{50}} \) given that \( x_i > 0 \) for \( i = 1, 2, \ldots, 50 \) and \( x_1 + x_2 + \ldots + x_{50} = 50 \), we can use the concept of the Arithmetic Mean-Harmonic Mean (AM-HM) inequality. ### Step-by-step Solution: 1. **Understanding the Problem**: We need to minimize the sum of the reciprocals of \( x_i \) values while the sum of \( x_i \) values equals 50. 2. **Apply the AM-HM Inequality**: The AM-HM inequality states that for any set of positive numbers \( a_1, a_2, \ldots, a_n \): \[ \frac{a_1 + a_2 + \ldots + a_n}{n} \geq \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}} \] In our case, let \( a_i = x_i \) for \( i = 1, 2, \ldots, 50 \). 3. **Calculate the Arithmetic Mean**: We know: \[ \frac{x_1 + x_2 + \ldots + x_{50}}{50} = \frac{50}{50} = 1 \] Therefore, by AM-HM: \[ 1 \geq \frac{50}{\frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_{50}}} \] 4. **Rearranging the Inequality**: Rearranging gives us: \[ \frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_{50}} \geq 50 \] 5. **Conclusion**: The minimum value of \( \frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_{50}} \) is therefore 50. ### Final Answer: The minimum value of \( \frac{1}{x_1} + \frac{1}{x_2} + \ldots + \frac{1}{x_{50}} \) is **50**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If both the mean and the standard deviation of 50 observations x_(1), x_(2),…, x_(50) are equal to 16, then the mean of (x_(1) -4)^(2), (x_(2) -4)^(2), …., (x_(50) - 4)^(2) is k. The value of (k)/(80) is _______.

x_(1) and x_(2) are two positive value of x for which 2 cos x,|cos x| and 3 sin^(2) x-2 are in GP. The minimum value of |x_(1)-x_(2)| is equal to

If both the mean and the standard deviation of 50 observatios x_(1), x_(2),….x_(50) are equal to 16, then the mean of (x_(1)-4)^(2), (x_(2)-4)^(2),….,(x_(50)-4)^(2) is

If (x+10)^50+(x−10)^50=a_0+a_1 x+a_2x^2+........a_50x^2+...........+a_50x^50 then the value of a2/a0 is equal to (A) 12.25 (B) 12.75 (C) 11.75 (D) 11.25

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,1] .

For all real values of x, the minimum value of (1-x+x^2)/(1+x+x^2) is(A) 0 (B) 1 (C) 3 (D) 1/3

Find the maximum and minimum values of f(x)=x^(50)-x^(20) in the interval [0,\ 1] .

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is