Home
Class 12
MATHS
The sequence {x(k)} is defined by x(k+1)...

The sequence `{x_(k)}` is defined by `x_(k+1)=x_(k)^(2)+x_(k)` and `x_(1)=(1)/(2)`. Then `[(1)/(x_(1)+1)+(1)/(x_(2)+1)+...+(1)/(x_(100)+1)]` (where `[.]` denotes the greatest integer function) is equal to

A

S=0 , if m = 40

B

S = 1 if m = 100

C

`S = 0 AA m in N `

D

`S = 1 AA m in N `

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)=k+1 , then (x^(4)-1)/(x^(2)+1) =

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2) - (1)/(x+k) , then find k ?

If (x^(4))/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+x^(2)-x+k then k=

Find the value of k, if (k)/(x^(2)-4) = (1)/(x-2)-(1)/(x+2)

If the function f(x) defined by f(x)= (log(1+3x)-"log"(1-2x))/x , x!=0 and k , x=0. Find k.

When x ^(100) is divided by x ^(2) -3x +2, the remainder is (2 ^(k +1) -1) x -2 (2 ^(k)-1), then k =

If inte^(x)/(x^(n))dx and -e^(x)/(k_(1)x^(n-1))+1/(k_(2)-1)I_(n-1) , then (k_(2)-k_(1)) is equal to:

int (x+ ( cos^(-1)3x )^(2))/(sqrt(1-9x ^(2)))dx = (1)/(k _(1)) ( sqrt(1-9x ^(2))+ (cos ^(-1) 3x )^(k_(2)))+c, then k _(1) ^(2)+k_(2)^(2)= (where C is an arbitrary constnat. )

If int (2^(1//x))/(x^(2))dx= k.2^(1//x) , then k is equal to :