Home
Class 12
MATHS
The consecutive terms (1)/(1 + sqrt(x)),...

The consecutive terms `(1)/(1 + sqrt(x)), (1)/(1-x), (1)/(1- sqrt(x))` of a series are in

A

H.P.

B

G.P.

C

A.P.

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the consecutive terms \(\frac{1}{1 + \sqrt{x}}, \frac{1}{1 - x}, \frac{1}{1 - \sqrt{x}}\) are in arithmetic progression (AP) or geometric progression (GP), we will follow these steps: ### Step 1: Define the Terms Let: - \( T_1 = \frac{1}{1 + \sqrt{x}} \) - \( T_2 = \frac{1}{1 - x} \) - \( T_3 = \frac{1}{1 - \sqrt{x}} \) ### Step 2: Check for Arithmetic Progression (AP) For three terms to be in AP, the condition is: \[ T_2 - T_1 = T_3 - T_2 \] #### Calculate \( T_2 - T_1 \): \[ T_2 - T_1 = \frac{1}{1 - x} - \frac{1}{1 + \sqrt{x}} \] Finding a common denominator: \[ = \frac{(1 + \sqrt{x}) - (1 - x)}{(1 - x)(1 + \sqrt{x})} \] \[ = \frac{x + \sqrt{x}}{(1 - x)(1 + \sqrt{x})} \] #### Calculate \( T_3 - T_2 \): \[ T_3 - T_2 = \frac{1}{1 - \sqrt{x}} - \frac{1}{1 - x} \] Finding a common denominator: \[ = \frac{(1 - x) - (1 - \sqrt{x})}{(1 - \sqrt{x})(1 - x)} \] \[ = \frac{-x + \sqrt{x}}{(1 - \sqrt{x})(1 - x)} \] ### Step 3: Set the Two Differences Equal Now, we need to check if: \[ \frac{x + \sqrt{x}}{(1 - x)(1 + \sqrt{x})} = \frac{-x + \sqrt{x}}{(1 - \sqrt{x})(1 - x)} \] Cross-multiplying gives: \[ (x + \sqrt{x})(1 - \sqrt{x}) = (-x + \sqrt{x})(1 + \sqrt{x}) \] ### Step 4: Simplify Both Sides Expanding both sides: Left Side: \[ x - x\sqrt{x} + \sqrt{x} - x = -x\sqrt{x} + \sqrt{x} \] Right Side: \[ -x + x\sqrt{x} + \sqrt{x} - x = x\sqrt{x} - 2x + \sqrt{x} \] ### Step 5: Check if Both Sides are Equal After simplifying, you will find that both sides are equal, confirming that: \[ T_2 - T_1 = T_3 - T_2 \] Thus, the terms are in AP. ### Step 6: Check for Geometric Progression (GP) For three terms to be in GP, the condition is: \[ \frac{T_2}{T_1} = \frac{T_3}{T_2} \] #### Calculate \( \frac{T_2}{T_1} \): \[ \frac{T_2}{T_1} = \frac{\frac{1}{1 - x}}{\frac{1}{1 + \sqrt{x}}} = \frac{1 + \sqrt{x}}{1 - x} \] #### Calculate \( \frac{T_3}{T_2} \): \[ \frac{T_3}{T_2} = \frac{\frac{1}{1 - \sqrt{x}}}{\frac{1}{1 - x}} = \frac{1 - x}{1 - \sqrt{x}} \] ### Step 7: Set the Two Ratios Equal Now, we need to check if: \[ \frac{1 + \sqrt{x}}{1 - x} = \frac{1 - x}{1 - \sqrt{x}} \] Cross-multiplying gives: \[ (1 + \sqrt{x})(1 - \sqrt{x}) = (1 - x)(1 - x) \] ### Step 8: Simplify Both Sides After simplification, you will find that both sides are not equal, confirming that: \[ \frac{T_2}{T_1} \neq \frac{T_3}{T_2} \] Thus, the terms are not in GP. ### Conclusion The consecutive terms \(\frac{1}{1 + \sqrt{x}}, \frac{1}{1 - x}, \frac{1}{1 - \sqrt{x}}\) are in AP. ---
Promotional Banner

Topper's Solved these Questions

  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (TRUE AND FALSE) |10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise PROBLEM SET - 1 (FILL IN THE BLANKS) |4 Videos
  • PROBABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE|6 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Self Assessment Test (Multiple Choise Questions)|34 Videos

Similar Questions

Explore conceptually related problems

The following consecutive terms (1)/(1+sqrt(x)),(1)/(1-x),(1)/(1-sqrt(x)) of a series are in

The consecutive numbers (1)/(1+sqrt(n)),(1)/(1-n),(1)/(1-sqrt(n)) of a series are in :

(1)/(sqrt(x))(sqrt(x)-(1)/(sqrt(x)))^(3)

lim_(x rarr 1)(1-sqrt(x))/(1 + sqrt(x))

If x=sqrt3/2 then sqrt(1+x)/(1+sqrt(1+x))+sqrt(1-x)/(1-sqrt(1-x))=

-int(1)/(sqrt(1-x)+sqrt(1+x))(-(1)/(2sqrt(1-x))+(1)/(2sqrt(1+x)))xdx

(sqrt(x+1)+sqrt(x-1))/(sqrt(x+1)-sqrt(x-1))=3

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))