Home
Class 14
MATHS
If a^3 + b^3 = 105, and (a + b) = 5 then...

If `a^3 + b^3 = 105`, and (a + b) = 5 then what is the value of ab?

A

21

B

`4//3`

C

7

D

`3//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( a^3 + b^3 = 105 \) 2. \( a + b = 5 \) We want to find the value of \( ab \). ### Step 1: Use the identity for the sum of cubes We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] ### Step 2: Rewrite \( a^2 - ab + b^2 \) We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting \( a + b = 5 \): \[ a^2 + b^2 = 5^2 - 2ab = 25 - 2ab \] Now, we can rewrite \( a^2 - ab + b^2 \) as: \[ a^2 - ab + b^2 = (a^2 + b^2) - ab = (25 - 2ab) - ab = 25 - 3ab \] ### Step 3: Substitute into the sum of cubes identity Now substituting back into the sum of cubes identity: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] This gives us: \[ 105 = 5(25 - 3ab) \] ### Step 4: Solve for \( ab \) Now, we can simplify: \[ 105 = 125 - 15ab \] Rearranging gives: \[ 15ab = 125 - 105 \] \[ 15ab = 20 \] Now, dividing both sides by 15: \[ ab = \frac{20}{15} = \frac{4}{3} \] ### Final Answer Thus, the value of \( ab \) is: \[ \boxed{\frac{4}{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(3) + b^(3) = 152 and a + b = 8 then what is the value of ab?

If a^3 + b^3 = 341 and ab= 30, then what is the value of a + b ?

If a ^(3) + b ^(3) + c ^(3) - 3abc = 250 and a + b + c = 10, then what is the value of ab + bc + ca ?

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?

If a-b=1 and ab=6 then what is the value of (a^(3)-b^(3))?

If a -b= 2 and ab = 15, then what is the value a^3 - b^3 ?

If a + b = 5 and ab = 6, then what is the vlaue of a ^(3) + b ^(3) ?