Home
Class 14
MATHS
If a ^(2) + b ^(2) = 169, ab = 60 , then...

If `a ^(2) + b ^(2) = 169, ab = 60 ,` then `(a ^(2) - b ^(2))` is equal to :

A

149

B

139

C

119

D

129

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 - b^2 \) given that \( a^2 + b^2 = 169 \) and \( ab = 60 \). ### Step-by-step Solution: 1. **Use the identity for \( a^2 + b^2 \)**: We know that: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting the known values: \[ 169 = (a + b)^2 - 2 \times 60 \] Simplifying this gives: \[ 169 = (a + b)^2 - 120 \] Therefore: \[ (a + b)^2 = 169 + 120 = 289 \] 2. **Calculate \( a + b \)**: Taking the square root of both sides: \[ a + b = \sqrt{289} = 17 \] 3. **Use the identity for \( a^2 - b^2 \)**: We know that: \[ a^2 - b^2 = (a + b)(a - b) \] We already have \( a + b = 17 \). Now we need to find \( a - b \). 4. **Use the identity for \( a^2 + b^2 \)** again to find \( a - b \)**: We also know: \[ a^2 + b^2 = (a - b)^2 + 2ab \] Substituting the known values: \[ 169 = (a - b)^2 + 120 \] Simplifying this gives: \[ (a - b)^2 = 169 - 120 = 49 \] 5. **Calculate \( a - b \)**: Taking the square root of both sides: \[ a - b = \sqrt{49} = 7 \] 6. **Calculate \( a^2 - b^2 \)**: Now we can find \( a^2 - b^2 \): \[ a^2 - b^2 = (a + b)(a - b) = 17 \times 7 = 119 \] Thus, the value of \( a^2 - b^2 \) is **119**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If a + b = 11 and ab = 15, then a ^(2) + b ^(2) is equal to :

If a^(3) - b^(3) = 210 and a-b = 5 , then ( a+ b)^(2) - ab is equal to :