Home
Class 12
MATHS
Matrices A and B Satisfy AB = B^(-1), ...

Matrices A and B Satisfy `AB = B^(-1)`, where B `=[{:(2,-2),(-1,0):}]`, find the value of `lambda` for which `lambdaA - 2B^(-1) + 1=O`, Without finding `B^(-1)`.

Text Solution

Verified by Experts

` because " " AB =B^(-1) or AB^(2) = I`
Now, `lambdaA-2B^(-1)+I=0`
`rArr" " lambdaAB-2B^(-1)B+IB=O`
`rArr" "lambdaAb-2I + B =O`
` rArr" "lambdaAB^(2) -2IB + B^(2) = O`
`rArr" "lambdaAB^(2) -2b + B^(2) =O`
`rArr " " lambdaI - 2B + B^(2) =O " " [because AB^(2) =I]`
`rArr lambda[{:(2,-2),(0,1):}]-2[{:(2,-2),(-1,0):}]+[{:(2,-2),(-1,0):}][{:(2,-2),(-1,0):}]=[{:(0,0),(0,0):}]`
`rArr " "[{:(lambda,0),(0,lambda):}]-[{:(4,-4),(-2,0):}]+[{:(6,-4),(-2,2):}]=[{:(0,0),(0,0):}]`
`rArr2 [{:(lambda+2,0),(0,lambda+2):}]=[{:(0,0),(0,0):}] rArr " " lamda+2=0`
`therefore " " lamda=-2`
Promotional Banner

Similar Questions

Explore conceptually related problems

If a =2, b=-2, find the value of : a^2+ab+b^2

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If A=[(1,2,3),(2,3,1)] and B=[(3,-1,3),(-1,0,2)] , then find 2A-B .

If A=[[alpha,0],[1,1]] and B=[[1,0],[5,1]] then the value of alpha for which A^2=B is

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , find the value of a and b.

If A'=[(-2,3),(1,2)] and B=[(-1,0),(1,2)] then find (A+2B)'

If A=[{:(1,-1),(2,-1):}],B=[{:(a,-1),(b,-1):}]" and "(A+B)^(2)=(A^(2)+B^(2)) then find the values of a and b.

When a=0, b=-1, find the value of the given expressions: 2a+2b