Home
Class 11
MATHS
If y = log[sece^(x^(2))] then (dy)/(dx)=...

If y = `log`[`sece^(x^(2))`]` then `(dy)/(dx)``=
` (a) 2xe^(x^(2))(tan e^(x^(2)))`
`(b) 2xe^(x^(2))(sec x^(2))(tan e^(x^(2)))`
`(c) x^(2)e^(x^(2))tan e^(x^(2))`
`(d) e^(x^(2))tan e^(x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=2y((e^(2x)-e^(-2x))/(e^(2x)+e^(-2x)))

If y = e^(cot x )tan (xe^(x) ) ,then ( dy)/(dx)=

(d)/(dx) "" tan^(-1) ((2e^(x))/(1 - e^(2x)))=

int(1-sec^(2)x-tan x)e^(x)dx

int e^(x)(tan x+sec^(2)x)*dx

If y=e^((x^(2)+tan y)),(dy)/(dx)=

tan^(-1)((e^(2x)+1)/(e^(2x)-1))

int e^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))dx is equal to (1)/(2)xe^(x^(2))e^(x^(4))+c( b) (1)/(2)x^(2)e^(x^(4))+c(1)/(2)e^(x^(2))e^(x^(4))+c(d)(1)/(2)x^(2)e^(x^(2))e^(x^(4))+c

int e^(x^(4))(x+x^(3)+2x^(5))e^(x^(2))*dx is equal to a.(1)/(2)xe^(x^(2))e^(x^(4))+c b.(1)/(2)x^(2)e^(x^(4))+c c.(1)/(2)e^(x^(2))e^(x^(4))+cd(1)/(2)x^(2)e^(x^(2))e^(x^(4))+c

If y= e^(2x) tan x ,then ( d^(2)y)/(dx^(2))=