Home
Class 10
MATHS
costheta=(a^(2)+b^(2))/(2ab), where a an...

`costheta=(a^(2)+b^(2))/(2ab)`, where a and b are two distinct numbers such that `ab gt 0`.

Text Solution

Verified by Experts

The correct Answer is:
false
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( FILL IN THE BLANKS )|11 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( VERY SHORT ANSWER TYPE QUESTIONS )|11 Videos
  • INTRODUCTION TO TRIGNOMETRY AND ITS APPLICATIONS

    EDUCART PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS ( MULTIPLE CHOICE QUESTIONS )|17 Videos
  • COORDINATE GEOMETRY

    EDUCART PUBLICATION|Exercise LONG ANSWER (LA) TYPE QUESTIONS (4 MARKS) |7 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    EDUCART PUBLICATION|Exercise LONG ANSWER Type Questions [4 marks]|10 Videos

Similar Questions

Explore conceptually related problems

a^(2)+2ab+b^(2)=0

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If 9a^(2)-6ab+b^(2)=0 then find a:b

If A=[[ab,b^(2)-a^(2),-ab]], then A is

If A and B are two matrices such that AB=B and BA=A, then A^(2)+B^(2)=

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N . The number of matrices B such that AB=BA , is equal to

(a^2+b^2+2ab)-(a^2+b^2-2ab)