Home
Class 12
MATHS
If log(e )((1+x)/(1-x))=a(0)+a(1)x+a(2)x...

If `log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo` then `a_(1), a_(3), a_(5)` are in

A

A.P.

B

G.P.

C

H.P.

D

A.G.P.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \log_e\left(\frac{1+x}{1-x}\right) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \ldots \] ### Step 1: Use the properties of logarithms We can rewrite the left-hand side using the property of logarithms that states \(\log\left(\frac{a}{b}\right) = \log(a) - \log(b)\): \[ \log_e(1+x) - \log_e(1-x) \] ### Step 2: Expand the logarithms using Taylor series The Taylor series expansion for \(\log(1+x)\) around \(x=0\) is: \[ \log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] Similarly, for \(\log(1-x)\): \[ \log(1-x) = -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \ldots\right) \] ### Step 3: Substitute the expansions into the equation Substituting the expansions into our equation gives: \[ \log(1+x) - \log(1-x) = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots\right) - \left(-x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \ldots\right) \] ### Step 4: Simplify the expression Combining the terms results in: \[ \log(1+x) - \log(1-x) = x + x + \left(\frac{x^3}{3} + \frac{x^3}{3}\right) + \ldots \] This simplifies to: \[ 2x + \frac{2x^3}{3} + \frac{2x^5}{5} + \ldots \] ### Step 5: Identify the coefficients From the simplified expression, we can identify the coefficients: - \(a_0 = 0\) - \(a_1 = 2\) - \(a_3 = \frac{2}{3}\) - \(a_5 = \frac{2}{5}\) ### Step 6: Analyze the coefficients Now we need to determine the relationship between \(a_1\), \(a_3\), and \(a_5\): - \(a_1 = 2\) - \(a_3 = \frac{2}{3}\) - \(a_5 = \frac{2}{5}\) ### Step 7: Check if they are in a progression To check if \(a_1\), \(a_3\), and \(a_5\) are in harmonic progression, we can use the property of harmonic progression: Three numbers \(a\), \(b\), and \(c\) are in harmonic progression if: \[ \frac{1}{a}, \frac{1}{b}, \frac{1}{c} \text{ are in arithmetic progression.} \] Calculating the reciprocals: - \(\frac{1}{a_1} = \frac{1}{2}\) - \(\frac{1}{a_3} = \frac{3}{2}\) - \(\frac{1}{a_5} = \frac{5}{2}\) Now, checking the arithmetic progression: \[ \frac{3}{2} - \frac{1}{2} = 1 \quad \text{and} \quad \frac{5}{2} - \frac{3}{2} = 1 \] Since the differences are equal, \(a_1\), \(a_3\), and \(a_5\) are indeed in harmonic progression. ### Final Answer Thus, \(a_1\), \(a_3\), and \(a_5\) are in harmonic progression. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

Let n in N . If (1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2)+…….+a_(n)x^(n) and a_(n)-3,a_(n-2), a_(n-1) are in AP, then :

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If the expansion in power of x of the function (1)/(( 1 - ax)(1 - bx)) is a_(0) + a_(1) x + a_(2) x^(2) + a_(3) x^(3) + …, then a_(n) is

If (1+x+x)^(2n)=a_(0)+a_(1)x+a_(2)x^(2)+a_(2n)x^(2n) , then a_(1)+a_(3)+a_(5)+……..+a_(2n-1) is equal to

If (1+x+x^(2))^(n)=a_(0)+a_(1)x+a_(2)x^(2)+….+a_(2n)x^(2n) where a_(0) , a(1) , a(2) are unequal and in A.P., then (1)/(a_(n)) is equal to :

If (a_(2)a_(3))/(a_(1)a_(4))=(a_(2)+a_(3))/(a_(1)+a_(4))=3((a_(2)-a_(3))/(a_(1)-a_(4))) , then a_(1),a_(2),a_(3),a_(4) are in

If log (1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+… then a_(3)+a_(6)+a_(9)+.. is equal to

If a_(1),a_(2),a_(3), . . .,a_(n) are non-zero real numbers such that (a_(1)^(2)+a_(2)^(2)+ . .. +a_(n-1).^(2))(a_(2)^(2)+a_(3)^(2)+ . . .+a_(n)^(2))le(a_(1)a_(2)+a_(2)a_(3)+ . . . +a_(n-1)a_(n))^(2)" then", a_(1),a_(2), . . . .a_(n) are in