Home
Class 11
MATHS
True or False: (x^2 - sqrt(1-x^2))^4 +...

True or False:
`(x^2 - sqrt(1-x^2))^4 + (x^2 + sqrt(1-x^2))^4` is a polynomial.

Promotional Banner

Similar Questions

Explore conceptually related problems

int (2x)/sqrt(1-x^2-x^4) dx=

Prove that : tan^-1[(sqrt(1+x^2) - sqrt(1-x^2))/(sqrt1+x^2 + sqrt(1-x^2))] = pi/4 - 1/2cos^-1x^2

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

Evaluate : lim_(x to oo) sqrt(x^(2)+x +1) - sqrt(x^(2)+1)

Evaluate the following: \ (x+sqrt(x^2-1))^6+(x-sqrt(x^2-1))^6

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

True or False: int 1/sqrt(1-x^2)dx=sin^-1x and also int 1/sqrt(1-x^2)dx=-cos^-1x

True or False statements : cot(cos^-1 x) = x/(sqrt(1-x^2) for |x| le 1