Home
Class 8
MATHS
(3-sqrt5)/(3+2sqrt5)=asqrt5-b...

`(3-sqrt5)/(3+2sqrt5)=asqrt5-b`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of a and b in each of the following : (a)(5+2sqrt3)/(7+4sqrt(3))=a-6sqrt(3)" "(b)(3-sqrt(5))/(3+2sqrt(5))=asqrt(5)-(19)/(11) (c )(sqrt(2)+sqrt(3))/(3sqrt2-2sqrt(3))=2-bsqrt(6)" "(d)(7+sqrt(5))/(7-sqrt(5))-(7-sqrt(5))/(7+sqrt(5))=a+(7)/(11)sqrt(5b)

If (4+3sqrt5)/(4-3sqrt5)=a+bsqrt5 ,a, b are rational numbers, them (a, b)=

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|

2sqrt5 - sqrt5 = sqrt5

Simplify: (2sqrt(3)+sqrt(5))(2sqrt(3)-sqrt(5))

The simplest rationalising factor of sqrt(3)+\ sqrt(5) is (a) sqrt(3)-5 (b) 3-sqrt(5) (c) sqrt(3)-sqrt(5) (d) sqrt(3)+\ sqrt(5)

Simplify each of the following by rationalising the denominator; 1/(5+sqrt(2)) (ii) (5+sqrt(6))/(5-sqrt(6)) (iii) (7+3sqrt(5))/(7-3sqrt(5)) (iv) (2sqrt(3)-sqrt(5))/(2sqrt(2)+3sqrt(3))

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

Simplify (7sqrt3)/(sqrt10+sqrt3)-(2sqrt5)/(sqrt6+sqrt5)-(3sqrt2)/(sqrt15+3sqrt2)

Rationalize the denominatiors of : (2sqrt(5)+3sqrt(2))/(2sqrt(5)-3sqrt(2))