Home
Class 10
MATHS
Evaluate [4(sin^(2)30^(@)+cos^(4)60^(@))...

Evaluate `[4(sin^(2)30^(@)+cos^(4)60^(@))-3(cos^(2)45^(@)-sin^(2)90^(@))]xx(2cos^(2)60^(@)+3sec^(2)30^(@)-2tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)45^(@))`

A

`55/6`

B

0

C

1

D

`32/3`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \[ \frac{[4(\sin^2 30^\circ + \cos^4 60^\circ) - 3(\cos^2 45^\circ - \sin^2 90^\circ)] \times [2\cos^2 60^\circ + 3\sec^2 30^\circ - 2\tan^2 45^\circ]}{\sin^2 30^\circ + \cos^2 45^\circ}, \] we will follow these steps: ### Step 1: Calculate the trigonometric values - \(\sin 30^\circ = \frac{1}{2}\) - \(\cos 60^\circ = \frac{1}{2}\) - \(\cos 45^\circ = \frac{1}{\sqrt{2}}\) - \(\sin 90^\circ = 1\) - \(\sec 30^\circ = \frac{1}{\cos 30^\circ} = \frac{2}{\sqrt{3}}\) - \(\tan 45^\circ = 1\) ### Step 2: Substitute the values into the expression Substituting the values we found into the expression gives us: \[ = \frac{[4\left(\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^4\right) - 3\left(\left(\frac{1}{\sqrt{2}}\right)^2 - 1\right)] \times [2\left(\frac{1}{2}\right)^2 + 3\left(\frac{2}{\sqrt{3}}\right)^2 - 2(1)]}{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} \] ### Step 3: Simplify the components 1. **Numerator Part 1:** - \(\sin^2 30^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4}\) - \(\cos^4 60^\circ = \left(\frac{1}{2}\right)^4 = \frac{1}{16}\) - \(\cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2}\) Thus, \[ 4\left(\frac{1}{4} + \frac{1}{16}\right) - 3\left(\frac{1}{2} - 1\right) = 4\left(\frac{4 + 1}{16}\right) - 3\left(-\frac{1}{2}\right) \] \[ = 4 \cdot \frac{5}{16} + \frac{3}{2} = \frac{20}{16} + \frac{24}{16} = \frac{44}{16} = \frac{11}{4} \] 2. **Numerator Part 2:** - \(\cos^2 60^\circ = \left(\frac{1}{2}\right)^2 = \frac{1}{4}\) - \(\sec^2 30^\circ = \left(\frac{2}{\sqrt{3}}\right)^2 = \frac{4}{3}\) - Thus, \[ 2\left(\frac{1}{4}\right) + 3\left(\frac{4}{3}\right) - 2(1) = \frac{1}{2} + 4 - 2 = \frac{1}{2} + 2 = \frac{5}{2} \] ### Step 4: Combine the results Now we combine the results from the numerator: \[ \frac{11}{4} \times \frac{5}{2} = \frac{55}{8} \] ### Step 5: Denominator - \(\sin^2 30^\circ + \cos^2 45^\circ = \frac{1}{4} + \frac{1}{2} = \frac{1}{4} + \frac{2}{4} = \frac{3}{4}\) ### Step 6: Final Calculation Now we can write the final expression: \[ \frac{\frac{55}{8}}{\frac{3}{4}} = \frac{55}{8} \times \frac{4}{3} = \frac{55 \times 4}{8 \times 3} = \frac{220}{24} = \frac{55}{6} \] Thus, the final answer is: \[ \boxed{\frac{55}{6}} \]
Promotional Banner

Topper's Solved these Questions

  • IMO QUESTION PAPER 2017 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Everyday Mathematics |10 Videos
  • IMO QUESTION PAPER 2017 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section |5 Videos
  • IMO QUESTION PAPER 2016 SET B

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos
  • IMO QUESTION PAPER 2017 SET-B

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (sin^(4) 60^(@) + sec^(4)30^(@)) - 2(cos^(2)45^(@) - sin^(2) 90^(@))

Evaluate: (sin^(4) 60^(@) + sec^(4) 30^(@)) - 2 (cos^(2) 45^(@) - sin^(2) 90^(@))

Find the value of 4(sin^(4)30^(@)+cos^(4)30^(@))-3(cos^(2)45^(@)+sin^(2)90^(@)) .

The value of (cos^(2)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@)) is

Evaluate: 3sin^(2)30^(@)+2tan^(2)60^(@)-5cos^(2)45^(@)

(4(sin^(2)60^(@)+cos^(2)60^(@)))/(tan^(2)45^(@)-cos^(2)90^(@)+sin90^(@))

Evaluate sin^(2)45^(@)+cos^(2)60^(@)+cosec^(2)30^(@) .

(5cos^(2)60+4sec^(2)30-tan^(2)45)/(sin^(2)30+cos^(2)30)

Evaluate : 4(sin^(4)30^(0)+cos^(4)60^(@))-(2)/(3)(sin^(2)60^(@)-cos^(2)45^(@))+(1)/(2)tan^(2)60^(@)