Home
Class 12
MATHS
In DeltaABC, if sin A sin B=(ab)/(c^(2)...

In `DeltaABC`, if sin A sin B`=(ab)/(c^(2))`, then the triangle is

A

equilateral

B

isosceles

C

right angled

D

obtuse angled

Text Solution

Verified by Experts

The correct Answer is:
C

Given ,`sinAsinB=(ab)/(c^(2))`
`rArrc^(2)=(ab)/(sinAsinB)=((a)/(sinA))((b)/(sinB))`
`rArrc^(2)=((c)/(sinC))^(2) " " [because(a)/(sinA)=(b)/(sinB)=(c)/(sinC)]`
`rArrsin^(2)C=1rArrC=90^(@)`
Hence , `DeltaABC` is a right angled triangle.
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In Delta ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

If in a Delta ABC, cos B = (sin A)/(2 sin C), then the triangle is

In triangle ABC, if sin^(2)A+sin^(2)B=sin^(2)C then the triangle is

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

In a Delta ABC if tan B=(2sin A sin C)/(sin(A+C)) then tan A,tan B,tan C are in

In Delta ABC , if sin^(2)A + sin^(2)B = sin^(2)C , then show that a^(2) + b^(2) = c^(2) .

In DeltaABC , if sin^(2)A+sin^(2)B=sin^(2)C and l(AB)=10, then the maximum value of the area of DeltaABC is

If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0 then the triangle is