Home
Class 12
MATHS
In the Mean Value theorem (f(b)-f(a))/(b...

In the Mean Value theorem `(f(b)-f(a))/(b-a)=f'(c)` if ` a=0 , b =1/2 ` and f(x)=x(x-1)(x-2) the value of c is

A

`1- sqrt(15)/(6)`

B

`1+ sqrt(15)`

C

`1 - sqrt(21)/(6)`

D

` 1+ sqrt(21)`

Text Solution

Verified by Experts

The correct Answer is:
C

Form mean value therorem,
`f'(c) = (f(b) -f(a))/(b-a)`
Given, `a = 0 rArr f(a) = 0`
`b = (1)/(2) rArr f(b) = (3)/(8)`
Now `f'(x) = (x-1)(x+2)+x(x-2)+x(x-1)`
`f'(c) = (c-1)(c-2)+c(c-2)+c(c-1)`
` = c^(2) -3c +2 + c^(2) - 2c + c^(2) - c`
`rArr f'(c) = 3(c)^(2) - 6c + 2`
By dfinition of mean vlaue of theorm `f(C) = (f(b) -f(a))/(b-a)`
`rArr 3c^(2) - 6c + 2 =((3)/(8) -0)/((1)/(2) -0) = (3)/(4)`
`rArr 3c^(2) - 6c + (5)/(4) = 0`
The is a quadratic equation in c.
`therefore " " c = (6pm sqrt(36 - 15))/(2 xx3)`
` = (6 pm sqrt(21))/(6) = 1 pm (sqrt(21))/(6)`
Since 'c' lies in the interval `[0,(1)/(2)]`
`therefore" " c = 1 - (sqrt(21))/(6)" "["neglecting"c = 1 + sqrt(21)/(6)\]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE SET 10

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise PAPER 2 (MATHEMATICS)|50 Videos
  • PRACTICE SET 12

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Paper 2 (Mathematics)|50 Videos

Similar Questions

Explore conceptually related problems

Find 'c' of the mean value theorem, if: f(x) = x(x-1) (x-2), a=0, b=1//2

From mean value theoren :f(b)-f(a)=(b-a)f'(x_(1));a

Knowledge Check

  • In the Mean value theorem f(b)-f(a)=(b-a)f'(c), if a=4, b=9 and f(x)= sqrtx , then the value of c is

    A
    `8.00`
    B
    5.25
    C
    `4.00`
    D
    6.25
  • In the mean value theorem f(b)-f(a)=(b-a)f'(c ) if a=4,b=9 and f(x)=sqrtx then the value of c is

    A
    8
    B
    5.25
    C
    4
    D
    6.25
  • If, from mean value theorem , f'(x_(1))=(f(b)-f(a))/(b-a), then:

    A
    `a ltx_(1) leb`
    B
    `a le x_(1) lt b`
    C
    `a lt x_(1) lt b`
    D
    `a le x_(1) le b`
  • Similar Questions

    Explore conceptually related problems

    From mean value theoren : f(b)-f(a)=(b-a)f^(prime)(x_1); a lt x_1 lt b if f(x)=1/x , then x_1 is equal to

    The mean value theorem is f(b) - f(a) = (b-a) f'( c) . Then for the function x^(2) - 2x + 3 , in [1,3/2] , the value of c:

    If mean value theorem holds good for the function f(x)=(x-1)/(x) on the interval [1,3] then the value of 'c' is 2 (b) (1)/(sqrt(3))( c) (2)/(sqrt(3))(d)sqrt(3)

    If f'(c)=(f (b)-f(a))/(b-a) , where f(x) =e^(x), a=0 and b=1 , then: c = ….

    If f(x) = 4x^(4) + x^(2) + 5b and f(1) = f(-1) , then what is the value of b ?