Home
Class 12
MATHS
int e^(tan x) (sec^(2) x + sec^(3) x sin...

`int e^(tan x) (sec^(2) x + sec^(3) x sin x ) dx` is equal to

A

`sec x e^(tanx ) + c`

B

`tan x e^(tan x) + c`

C

`e^(tan x ) + tan x + c`

D

`(1 + tan x ) e^(tan x) + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^{\tan x} \left( \sec^2 x + \sec^3 x \sin x \right) dx \), we can follow these steps: ### Step 1: Simplify the integrand We can factor out \( \sec^2 x \) from the integrand: \[ I = \int e^{\tan x} \sec^2 x \left( 1 + \sec x \sin x \right) dx \] ### Step 2: Rewrite \( \sec x \) and \( \sin x \) Recall that: \[ \sec x = \frac{1}{\cos x} \quad \text{and} \quad \sin x = \frac{\tan x}{\sec x} \] Thus, we can express \( \sec x \sin x \) as: \[ \sec x \sin x = \frac{\sin x}{\cos x} = \tan x \] So, we can rewrite the integral as: \[ I = \int e^{\tan x} \sec^2 x (1 + \tan x) dx \] ### Step 3: Substitution Let \( t = \tan x \). Then, the derivative \( dt = \sec^2 x \, dx \). Therefore, we can rewrite the integral in terms of \( t \): \[ I = \int e^t (1 + t) dt \] ### Step 4: Split the integral Now we can split the integral: \[ I = \int e^t dt + \int t e^t dt \] ### Step 5: Solve the first integral The integral of \( e^t \) is: \[ \int e^t dt = e^t \] ### Step 6: Solve the second integral using integration by parts For the integral \( \int t e^t dt \), we use integration by parts: Let \( u = t \) and \( dv = e^t dt \). Then, \( du = dt \) and \( v = e^t \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we get: \[ \int t e^t dt = t e^t - \int e^t dt = t e^t - e^t \] ### Step 7: Combine results Now we combine the results: \[ I = e^t + (t e^t - e^t) = t e^t \] ### Step 8: Substitute back for \( t \) Recall that \( t = \tan x \): \[ I = \tan x \cdot e^{\tan x} \] ### Step 9: Add the constant of integration Finally, we add the constant of integration \( C \): \[ I = \tan x \cdot e^{\tan x} + C \] ### Final Answer Thus, the integral \( \int e^{\tan x} \left( \sec^2 x + \sec^3 x \sin x \right) dx \) is equal to: \[ \tan x \cdot e^{\tan x} + C \]

To solve the integral \( I = \int e^{\tan x} \left( \sec^2 x + \sec^3 x \sin x \right) dx \), we can follow these steps: ### Step 1: Simplify the integrand We can factor out \( \sec^2 x \) from the integrand: \[ I = \int e^{\tan x} \sec^2 x \left( 1 + \sec x \sin x \right) dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MHTCET 2009

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MATHEMATICS|50 Videos
  • MHTCET 2011

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise METHEMATICS|50 Videos

Similar Questions

Explore conceptually related problems

int e^x (tan x+1) sec x dx

int e^(x)(tan x+sec^(2)x)*dx

Knowledge Check

  • inte^(tanx)(sec^(2)x+sec^(3)xsinx)dx is equal to

    A
    `secx e^(tanx)+c`
    B
    `tan xe^(tanx)+c`
    C
    `e^(tanx)+tanx+c`
    D
    `(1+tanx)e^(tanx)+c`
  • int e^(x) sec x (1 + tan x) dx is equal to

    A
    `e^(x) cos x + C`
    B
    `e^(x) sec x + C`
    C
    `e^(x) sin x + C`
    D
    `e^(x) tan x + C`
  • int e ^( sec x) tan x sec x dx is equal to

    A
    `e ^( tan x) + C`
    B
    `e ^( sec x) + C`
    C
    `e ^( secx) sec x + C`
    D
    `e ^( sec x ) tan x + C`
  • Similar Questions

    Explore conceptually related problems

    int e^(x)sec e^(x)dx

    The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

    The value of int e^(tan x)(x sec^(2)x+sin2x)dx is equal to

    int(sec^(4)x)/(sqrt(tan x))dx is equal to

    int tan^3 2x sec 2x dx =