Home
Class 12
MATHS
Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13...

Prove that: `sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2`

Text Solution

AI Generated Solution

To prove that \( \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right) = \frac{\pi}{2} \), we will follow these steps: ### Step 1: Combine the first two terms We start with the left-hand side (LHS): \[ \sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) \] Using the formula for the sum of inverse sines: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CUET MOCK TEST 2022

    XII BOARDS PREVIOUS YEAR|Exercise Question|49 Videos

Similar Questions

Explore conceptually related problems

Solve : 2pi-(sin^(-1)(4/5)+sin^(-1)(5/13)+sin^(-1)(16/65))=

Prove that: sin^(-1)((3)/(5))+cos^(-1)((12)/(13))=sin^(-1)((56)/(65))

Knowledge Check

  • sin^(-1)(4//5) + sin^(-1)(5//13) + sin^(-1)(16//65) is equal to

    A
    0
    B
    `pi//2`
    C
    `pi`
    D
    `sin^(-1)(63//65)`
  • Similar Questions

    Explore conceptually related problems

    Prove that sin^(-1)((4)/(5))+tan^(-1)((5)/(12))+cos^(-1)((63)/(65))=(pi)/(2)

    Prove that: tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

    Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

    Prove that :tan^(-1)(63)/(16)=sin^(-1)(5)/(13)+cos^(-1)(3)/(5)

    Prove that: cos^(-1)((12)/(13))+sin^(-1)((3)/(5))=sin^(-1)((56)/(65))

    Prove that: sin^(-1)(12)/(13)+cos^(-1)(4)/(5)+tan^(-1)(63)/(16)=pi

    Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi