Home
Class 10
MATHS
A palm tree stands on the bank of a rive...

A palm tree stands on the bank of a river. A post is fixed in the earth on the other bank just opposite to the palm tree. On moving ` 7sqrt(3)` metres from the post along the bank, it is found that the tree makes an angle of `60^(@)` at that point with respect to this bank. Find the width of the river.

Text Solution

Verified by Experts

Let the width of the river be AB. A is the position of palm tree and B is the position of the post.
As per question.
if BC = `7sqrt(3)` m, then `angleACB = 60^(@)`.
Now, from the right-angled triangle ABC, we get,
`tan 60^(@) = (AB)/(BC)`
or, `sqrt(3) = (AB)/(7sqrt(3)) " " or, " " AB = sqrt(3)xx7sqrt(3)` or, AB = 21.
Hence the width of the river is 21 metres.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • APPLICATION OF TRIGONOMETRIC RATIOS: HEIGHTS AND DISTANCES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE (Multiple choice question (MCQ) :|4 Videos
  • APPLICATION OF TRIGONOMETRIC RATIOS: HEIGHTS AND DISTANCES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE (Write true or fals :)|2 Videos
  • APPLICATION OF TRIGONOMETRIC RATIOS: HEIGHTS AND DISTANCES

    CALCUTTA BOOK HOUSE|Exercise Example 2. Shor-answer-type question (SA) :|6 Videos
  • COMPOUND INTEREST

    CALCUTTA BOOK HOUSE|Exercise SHORT ANSWERS TYPE QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

A palm tree stands on the bank of a river. A post is fixed I the earth on the other bank just opposite to the palm tree. On moving 7sqrt3 metres from the post laong the bank, it is found the tree makes an angle of 60^2 at that point with respect to this bank. Find the width of the river.

A telegraph post is bent at a point above the ground due to storm. Its top just meets the ground at a distance of 8sqrt3 metres from its foot and makes an angle of 30^@ . Calculate at what heigh the post is bent and what is the height of the post.

Knowledge Check

  • Two posts are just on the opposite side of a road. The heights of the posts are in the ratio sqrt3:1. The angle of elevation of the top of the smaller post from the mid point of the road is 45^@ . What is the angle of depression of the point from the top of the other post?

    A
    `60^@`
    B
    `30^@`
    C
    `90^@`
    D
    `45^@`
  • Similar Questions

    Explore conceptually related problems

    A man stands at a point X on the bank of a river and looks at the top of a tower which is situated exactly opposite to him on the other bank. The angle of elevations is 45^@ . The man then walk 300 m at right angle to the bank and away from it, to the point Y. From Y he looks at the top of the lower and finds the angle of elevations as 30^@ . Calculate the height of the tower and the width of the river.

    Two houses stand just on the opposite sides of a road of a village. A ladder that stands against the wall of the first house is at a distance of 6 metres from the house and makes an angle of 30^(@) with the horizontal line.But if the ladder stands against the wall of the second house keeping its foot at the same point, it makes an angle of 60^(@) with the horizontal line. (a) Find the length of the ladder. (b) Calculate the distance of the foot of the ladder from the foot of the wall of the second house. (c) Find the width of the road. Find the height where the top of the ladder is fixed against the wall of the second house.

    A man, standing on the bank of a river observes that the angle of elevation of the top of a tree just on the opposite bank is 60^@ But the angle off elevations is 30^@ from a point at a distance y metres from the bank. Show that the height of tree h= sqrt(3y)/2.

    A boat has to cross a river. It crosses the river by making an angle of 60^(@) with the bank of the river due to the stream of the river and travels a distance of 600m to reach the another side of the river. What is the width of the river?

    A bridge is situted at right-angle to the bank of a river. If one moves away a certain distance from the bridge along this side of the river, the other of the bridge is seen at an angle of 45^(@) and if someone moves a further distance of 400 metres in the same direction, the other end is seen at an angle of 30^(@) . Find the length of the bridge.

    Answer any One question : From a quay of a river, 600 metres wide, two boats start in two different directions to reach the opposite side of the river. The first boat moves making an angle of 30^@ with this bank and the second moves making an angle 90^@ with direction of the first boat. What will be the distance between the two boats when both of them reach the other side?

    A man can reach the point directly opposite on the other bank of a river by swimming across the river in time t_1 and crosses the same distance in time t_2 while swimming along the current. If the velocity of the man in still water is v and velocity of the water current is u , find the ratio between t_1 and t_2 .