Home
Class 12
PHYSICS
In a capillary tube of radius 'R' a stra...

In a capillary tube of radius 'R' a straight thin metal wire of radius 'r' (`Rgtr)` is inserted symmetrically and one of the combination is dipped vertically in water such that the lower end of the combination Is at same level . The rise of water in the capillary tube is [T=surface tensiono of water `rho` =density of water ,g =gravitational acceleration ]

A

`(T)/((R+r)rho g)`

B

`(R rho g)/(2T)`

C

`(2T)/((R-r)rho g)`

D

`((R-r )rho g)/(T)`

Text Solution

Verified by Experts

The correct Answer is:
C

According to question, rise of water in the capillary tube is given by
`h = (2T cos theta)/(rho g(R-r))`
[Symbols have their usual meanings]
In the given case,
`cos theta = 1` as `theta = 0^(@)`
So, `h = (2T)/(rho g(R-r))`
Promotional Banner

Topper's Solved these Questions

  • SURFACE TENSION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise Exercise 2 (Miscellaneous Problems)|42 Videos
  • STATIONARY WAVES

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|28 Videos
  • WAVE MOTION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET CORNER|23 Videos

Similar Questions

Explore conceptually related problems

In a capillary tube of radius 'R' a straight thin metal wire of radius ' r ' (R gt r) is inserted symmetrically and one end of the combination is at the same level . The rise of water in the capillary tube is

A glass rod of radius r_(1) is inserted symmetrically into a vertical capillary tube of radius r_(2) such that their lower ends are at the same level. The arrangement is now dipped in water. The height to which water will rise into the tube will be ( sigma = surface tension of water, rho = density of water)

When one end of a capillary tube is dipped vertically in water, the pressure below the meniscus of water is

Water rises to a height of 5 cm when a narrow glass tube is dipped vertically in it . If the tube is inclined at 60^(@) to the vertical , then the rise of water in the capillary tube will be

A capillary tube of area of cross-section A is dipped in water veritcally. Calculate the amount of heat evolved as the water rises in the capillary tunbe upto height h. The density of water is rho

The lower end of a capillary tube of radius r is placed vertically in water of density rho , surface tension S. The rice of water in the capillary tube is upto height h, then heat evolved is

If a capillary tube of diameter 0.4 m is dipped vertically into water, then the height to which water rises in the capillary tube will be ,

The radius of a capillary tube is 1.4 mm . Water of weight 6.28 xx 10^(-4) N rises in the capillary tube, when it is dipped vertically in water . What is the surface tension of water ?

A capillary tube of radius 0.5 mm is dipped in a vessel containing water. Calculate the height to which water will rise in the capillary tube. Take, surface tension of water =7.4 xx 10^(-3)" N/m".