Home
Class 12
MATHS
Let A and B be two symmetric matrices of...

Let A and B be two symmetric matrices of order 3. Statement-1 : A(BA) and (AB)A are symmetric matrices. Statement-2 : AB is symmetric matrix if matrix multiplication of A with B is commutative.    Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.    Statement-1 is true, Statement-2 is true; Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.    Statement-1 is true, Statement-2 is false.    Statement-1 is false, Statement-2 is true.

Text Solution

AI Generated Solution

To solve the problem, we need to analyze the two statements regarding the symmetric matrices \( A \) and \( B \). ### Step 1: Understanding Symmetric Matrices A matrix \( M \) is symmetric if \( M^T = M \). Given that both \( A \) and \( B \) are symmetric matrices, we have: - \( A^T = A \) - \( B^T = B \) ### Step 2: Checking Statement 1 ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|6 Videos
  • PARABOLA

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|9 Videos

Similar Questions

Explore conceptually related problems

Let A be a 2""xx""2 matrix Statement 1 : a d j""(a d j""A)""=""A Statement 2 : |a d j""A|""=""|A| (1) Statement1 is true, Statement2 is true, Statement2 is a correct explanation for statement1 (2) Statement1 is true, Statement2 is true; Statement2 is not a correct explanation for statement1. (3) Statement1 is true, statement2 is false. (4) Statement1 is false, Statement2 is true

Statement-1: intsin^-1xdx+intsin^-1sqrt(1-x^2)dx=pi/2x+c Statement-2: sin^-1x+cos^-1x=pi/2 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

Knowledge Check

  • Let A and B two symmetric matrices of order 3. Statement 1 : A(BA) and (AB)A are symmetric matrices. Statement 2 : AB is symmetric matrix if matrix multiplication of A with B is commutative.

    A
    Statement 1 is false, statement 2 is true.
    B
    Statement 1 is true, statement 2 is true, statement 2 is a correct explanation for statement 1.
    C
    Statement 1 is true, statement 2 is true, statement 2 is not a correct explanation for statement 1.
    D
    Statement 1 is true, statement 2 is false.
  • Let A and B are symmetric matrices of order 3. Statement -1 A (BA) and (AB) A are symmetric matrices. Statement-2 AB is symmetric matrix, if matrix multiplication of A with B is commutative.

    A
    Statement -1 is true, Statement - 2 is true, Statement -2 is not
    a correct explanation for Statement-1
    B
    Statement-1 is true, Statement-2 is false
    C
    Statement-1 is false, Statement-2 is true
    D
    Statement -1 is true, Statement-2 is true, Statement-2 is a
    correct explanation for Statement-1
  • Similar Questions

    Explore conceptually related problems

    Statement -1 (1/2)^7lt(1/3)^4 implies 7log(1/2)lt4log(1/3)implies7lt4 Statement-2 If axltay , where alt0 ,x, ygt0 , then xgty . (a) Statement-1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1 Statement-1 is true, Statement-2 is true, Statement-2 is not a correct explanation for Statement -1 (c) Statement -1 is true, Statement -2 is false (d) Statement -1 is false, Statement -2 is true.

    If A is 2 x 2 invertible matrix such that A=adjA-A^-1 Statement-I 2A^2+I=O(null matrix) Statement-II: 2|A|=1 (i) Statement-I is true, Statement-II is true; Statement-II is a correct explanation for Statement-I (2) Statement-I is true, Statement-II is true; Statement-II is not a correct explanation for Statement-I. 3) Statement-I is true, Statement-II is false. (4) Statement-I is false, Statement-II is true.

    Statement-1: The function F(x)=intsin^2xdx satisfies F(x+pi)=F(x),AAxinR ,Statement-2: sin^2(x+pi)=sin^2x (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

    Statement 1: The function f(x)=[[x]]-2[x-1]+[x+2] is discontinuous at all integers. Statement 2: [x] is discontinuous at all integral values of xdot Statement 1 is True: Statement 2 is True; Statement 2 is a correct explanation for statement 1 Statement 1 is true, Statement 2 is true; Statement 2 not a correct explanation for statement 1. Statement 1 is true, statement 2 is false Statement 1 is false, statement 2 is true

    Consider the function F(x)=intx/((x-1)(x^2+1))dx Statement-1: F(x) is discontinuous at x=1 ,Statement-2: Integrand of F(x) is discontinuous at x=1 (A) Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1. (B) Statement-1 is True, Statement-2 is True, Statement-2 is NOT a correct explanation for Statement-1. (C) Statement-1 is True, Statement-2 is False. (D) Statement-1 is False, Statement-2 is True.

    Let R be the set of real numbers. Statement-1 : A""=""{(x ,""y) in R""xx""R"":""y-x is an integer} is an equivalence relation on R. Statement-2 : B""=""{(x ,""y) in R""xx""R"":""x""=alphay for some rational number a} is an equivalence relation on R. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1. Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1. Statement-1 is true, Statement-2 is false. Statement-1 is false, Statement-2 is true.