Home
Class 12
MATHS
Let ABCD be a parallelogram such that v...

Let ABCD be a parallelogram such that ` vec A B= vec q , vec A D= vec p""a n d""/_B A D` be an acute angle. If ` vec r` is the vector that coincides with the altitude directed from the vertex B to the side AD, then ` vec r` is given by (1) ` vec r=3 vec q-(3( vec pdot vec q))/(( vec pdot vec p)) vec p` (2) ` vec r=- vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p` (3) ` vec r= vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p` (4) ` vec r=-3 vec q+(3( vec pdot vec q))/(( vec pdot vec p)) vec p`

Answer

Step by step text solution for Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p""a n d""/_B A D be an acute angle. If vec r is the vector that coincides with the altitude directed from the vertex B to the side AD, then vec r is given by (1) vec r=3 vec q-(3( vec pdot vec q))/(( vec pdot vec p)) vec p (2) vec r=- vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (3) vec r= vec q+(( vec pdot vec q)/( vec pdot vec p)) vec p (4) vec r=-3 vec q+(3( vec pdot vec q))/(( vec pdot vec p)) vec p by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    JEE MAINS PREVIOUS YEAR|Exercise All Questions|16 Videos

Similar Questions

Explore conceptually related problems

Let ABCD be a parallelogram such that vec AB=vec q,vec AD=vec p and /_BAD be an acute angle.If vec r is the vector that coincides with the altitude directed from the vertex B to the side AD,then vec r is

The vectors vec a and vec b are not perpendicular and vec c and vec d are two vectors satisfying : vec b""xxvec c""= vec b"" xxvec d"",vec a * vec d=0 . Then the vector vec d is equal to : (1) vec b-(( vec bdot vec c)/( vec adot vec d)) vec c (2) vec c+(( vec adot vec c)/( vec adot vec b)) vec b (3) vec b+(( vec bdot vec c)/( vec adot vec b)) vec c (4) vec c-(( vec adot vec c)/( vec adot vec b)) vec b

Knowledge Check

  • If vec P xx vec Q= vec R, vec Q xx vec R= vec P and vec R xx vec P = vec Q then

    A
    `vec(P),vec(Q)` and `vec(R)` are coplanar
    B
    angle between `vec(P)` and `vec(Q)` may be less than `90^(@)`
    C
    `vec(P)+vec(Q)+vec(R)` cannot be equal to zero.
    D
    `vec(P),vec(Q)` and `vec(R)` are mutually perpendicular
  • Similar Questions

    Explore conceptually related problems

    If |vec p|=2|vec q|=3 then (|vec p xxvec q|)/(sin(vec p,vec q))=

    The projection of point P( vec p) on the plane vec rdot vec n=q is ( vec s) , then a. vec s=((q- vec pdot vec n) vec n)/(| vec n|^2) b. vec s=p+((q- vec pdot vec n) vec n)/(| vec n|^2) c. vec s=p-(( vec pdot vec n) vec n)/(| vec n|^2) d. vec s=p-((q- vec pdot vec n) vec n)/(| vec n|^2)

    Line vec r= vec a+lambda vec b will not meet the plane vec rdot vec n=q , if a. vec bdot vec n=0, vec adot vec n=q b. vec bdot vec n!=0, vec adot vec n!=q c. vec bdot vec n=0, vec adot vec n!=q d. vec bdot vec n!=0, vec adot vec n=q

    If vec p + vec q + vec r = xvec s and vec q + vec r + vec s = yvec p and are vec p, vec q, vec r non coplaner vectors then | vec p + vec q + vec r + vec r + vec s | =

    If vec p = vec a + vec b, vec q = vec a-vec b | vec a | = | vec b | = 1 then | vec p xxvec q | =

    Given that vec a , vec b , vec p , vec q are four vectors such that vec a+ vec b=mu vec p , vec b*vec q=0a n d|vec b|^2=1,w h e r emu is a scalar. Then |( vec adot vec q) vec p-( vec pdot vec q) vec a| is equal to a.2| vec pdot vec q| b. (1//2)| vec pdot vec q| c. | vec pxx vec q| d. | vec pdot vec q|

    If vec r=3vec p+4vec q and 2vec r=vec p-3vec q then