Home
Class 12
MATHS
int(2)^(3) (2x)/(1+x^(2))dx...

`int_(2)^(3) (2x)/(1+x^(2))dx`

Text Solution

Verified by Experts

The correct Answer is:
`l n2`
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Short Answer Question|2 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Question|3 Videos
  • DEFINITE INTEGRALS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Exercise-7(d)|27 Videos
  • DE MOIVRE'S THEOREM

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise Long Answer Questions|6 Videos
  • DIFFERENTIAL EQUATIONS

    VIKRAM PUBLICATION ( ANDHRA PUBLICATION)|Exercise EXERCISE- 8(e)|25 Videos

Similar Questions

Explore conceptually related problems

int_(2)^(3) (1)/(x^(2)-x) dx=

Evaluate the definite integrals int_(2)^(3)(dx)/(x^(2)-1)

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx

int_(0)^(3) (3x + 1)/(x^(2)+9)dx=

int_(-2)^(3) |1-x^(2)|dx=

int_(0)^(1) (x^2)(1+x^2) dx =

If I_(1) int sin^(-1) ((2x)/(1 +x^(2)) ) dx , I_(2) = int cos^(-1) ((1-x^(2))/(1 +x^(2)) ) dx , I_(3) = int tan^(-1) ((2x)/(1 - x^(2)) ) dx , then I_(1) + I_(2) - I_(3) =

int_(0)^(1)(x^(3))/((1+x^(2))^(3))dx=

If I_(1)= int Sin^(-1)((2x)/(1+x^(2)))dx,I_(2)= int Cos^(-1)((1-x^(2))/(1+x^(2)))dx, I_(3)= intTan^(-1)((2x)/(1-x^(2)))dx then the value of I_(1)+I_(2)-I_(3)=

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))