Home
Class 12
PHYSICS
Calculate the de-Broglie wavelength of a...

Calculate the de-Broglie wavelength of an electron of kinetic energy 100 eV. Given `m_(e)=9.1xx10^(-31)kg, h=6.62xx10^(-34)Js`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the de-Broglie wavelength of an electron with a kinetic energy of 100 eV, we can follow these steps: ### Step 1: Convert Kinetic Energy to Joules The kinetic energy (KE) is given in electron volts (eV). We need to convert this to joules (J) using the conversion factor: \[ 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \] So, for 100 eV: \[ KE = 100 \text{ eV} \times 1.6 \times 10^{-19} \text{ J/eV} = 1.6 \times 10^{-17} \text{ J} \] ### Step 2: Calculate the Momentum of the Electron The kinetic energy can also be expressed in terms of momentum (p) as: \[ KE = \frac{p^2}{2m} \] Rearranging this gives: \[ p = \sqrt{2m \cdot KE} \] Substituting the mass of the electron \( m = 9.1 \times 10^{-31} \text{ kg} \) and the kinetic energy we just calculated: \[ p = \sqrt{2 \times (9.1 \times 10^{-31} \text{ kg}) \times (1.6 \times 10^{-17} \text{ J})} \] Calculating this: \[ p = \sqrt{2 \times 9.1 \times 10^{-31} \times 1.6 \times 10^{-17}} = \sqrt{2.912 \times 10^{-47}} \approx 5.39 \times 10^{-24} \text{ kg m/s} \] ### Step 3: Use the de-Broglie Wavelength Formula The de-Broglie wavelength \( \lambda \) is given by: \[ \lambda = \frac{h}{p} \] where \( h = 6.62 \times 10^{-34} \text{ Js} \). Substituting the value of \( p \): \[ \lambda = \frac{6.62 \times 10^{-34} \text{ Js}}{5.39 \times 10^{-24} \text{ kg m/s}} \] Calculating this gives: \[ \lambda \approx 1.227 \times 10^{-10} \text{ m} \] ### Final Answer The de-Broglie wavelength of the electron is approximately: \[ \lambda \approx 1.227 \times 10^{-10} \text{ m} \] ---

To calculate the de-Broglie wavelength of an electron with a kinetic energy of 100 eV, we can follow these steps: ### Step 1: Convert Kinetic Energy to Joules The kinetic energy (KE) is given in electron volts (eV). We need to convert this to joules (J) using the conversion factor: \[ 1 \text{ eV} = 1.6 \times 10^{-19} \text{ J} \] So, for 100 eV: \[ ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DUAL NATURE OF RADIATION AND MATTER

    PRADEEP|Exercise Value based question|1 Videos
  • CURRENT ELECTRICITY

    PRADEEP|Exercise Problems for Practice (B)|2 Videos
  • ELECTROMAGNETIC INDUCTION & ALTERNATING CURRENT

    PRADEEP|Exercise Multiple Choice Questions|1 Videos

Similar Questions

Explore conceptually related problems

What is the (a) momentum (b) speed and (c) de-Broglie wavelength of an electron with kinetic energy of 120 eV. Given h=6.6xx10^(-34)Js, m_(e)=9xx10^(-31)kg , 1eV=1.6xx10^(-19)J .

Calculate the wavelength of de Broglie waves associated with a proton of kinetic energy 500 eV. (Given : m_(p)=1.67 xx 10^(-27)kg, h=6.63 xx 10^(-34)Js ).

Knowledge Check

  • The de Broglie wavelength of an electron with kinetic energy 120 e V is ("Given h"=6.63xx10^(-34)Js,m_(e)=9xx10^(-31)kg,1e V=1.6xx10^(-19)J)

    A
    `2.13Ã…`
    B
    `1.13Ã…`
    C
    `4.15Ã…`
    D
    `3.14Ã…`
  • The de Broglie wavelength of an electron in a metal at 27^(@)C is ("Given"m_(e)=9.1xx10^(-31)kg,k_(B)=1.38xx10^(-23)JK^(-1))

    A
    `6.2xx10^(-9)m`
    B
    `6.2xx10^(-10)m`
    C
    `6.2xx10^(-8)m`
    D
    `6.2xx10^(-7)m`
  • The de-Broglie wavelength associated with an electron having a kinetic energy of 10 eV is

    A
    10 Å
    B
    12.27 Å
    C
    3.9 Å
    D
    0.10 Å
  • Similar Questions

    Explore conceptually related problems

    Determine de-Broglie wavelength of an electron having kinetic energy of 1. 6 xx 10 ^(-6) erg. (m_c = 9. 11 xx 10^(-28) g, h= 6.62 xx 10^(-27) erg -sec ) .

    If the mass of neutron is 1.7 xx 10^(-27) kg, then the de - Broglie wavelength of neutron of energy 3 eV is: (h = 6.6 xx 10^(-34) Js)

    If the mass of neutron = 1.7 xx 10^(-27) kg, then the de-Broglie wavelength of neutron of energy 3 eV is (h = 6.6 xx 10^(-34) J s)

    Calculate de - Broglie wavelength of an electron having kinetic energy 2.8xx10^(-23)J electron having kinetic energy 2.8xx10^(-23)J. (m_(e)=9.1xx10^(-31)kg)

    An electron is accelerated under a potential difference of 64 V, the de-Brogile wavelength associated with electron is [e = -1.6 xx 10^(-19) C, m_(e) = 9.1 xx 10^(-31)kg, h = 6.623 xx 10^(-34) Js]