Home
Class 11
MATHS
sin (A+B) * sin (A-B)=...

`sin (A+B) * sin (A-B)=`

A

`sin^(2)A -cos^(2)B`

B

`cos^(2)A -sin^(2)B`

C

`sin^(2)A -sin^(2)B`

D

`cos^(2)A -cos^(2)B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin(A+B) \cdot \sin(A-B) \), we can use the product-to-sum identities in trigonometry. Here’s a step-by-step solution: ### Step 1: Use the sine addition and subtraction formulas The sine addition formula states: \[ \sin(A+B) = \sin A \cos B + \cos A \sin B \] The sine subtraction formula states: \[ \sin(A-B) = \sin A \cos B - \cos A \sin B \] ### Step 2: Substitute the formulas into the expression Now, substituting these formulas into the expression: \[ \sin(A+B) \cdot \sin(A-B) = (\sin A \cos B + \cos A \sin B)(\sin A \cos B - \cos A \sin B) \] ### Step 3: Recognize the difference of squares This expression can be recognized as a difference of squares: \[ (x+y)(x-y) = x^2 - y^2 \] where \( x = \sin A \cos B \) and \( y = \cos A \sin B \). ### Step 4: Apply the difference of squares Applying the difference of squares: \[ \sin^2 A \cos^2 B - \cos^2 A \sin^2 B \] ### Step 5: Factor the expression We can factor the expression further: \[ = \sin^2 A \cos^2 B - \cos^2 A \sin^2 B = (\sin^2 A - \sin^2 B)(\cos^2 B + \cos^2 A) \] ### Final Result Thus, the final expression simplifies to: \[ \sin(A+B) \cdot \sin(A-B) = \frac{1}{2}(\cos(2B) - \cos(2A)) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

19.Prove that sin (A + B) sin (AB) + sin (B + C) sin (BC) + sin (C + A) sin (CA) = 0

sin A sin (A + 2B) -sin B sin (B + 2A) = sin (AB) sin (A + B)

Knowledge Check

  • sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

    A
    `4 sin A * sin B * sin (A-B)`
    B
    `4 sin A * cos B * cos (A-B)`
    C
    `4 cos A * sin B * cos (A-B)`
    D
    `4 cos A * cos B * sin (A-B)`
  • Similar Questions

    Explore conceptually related problems

    sin A sin (A + 2B) sin B sin (B + 2A) = sin (AB) sin (A + B)

    In any ABC, prove that: Delta=(a^(2)-b^(2))/(2)(sin A sin B)/(sin(A-B))

    a sin A-b sin B=c sin(A-B)

    a sin A-b sin B=c sin(A-B)

    a sin A-b sin B=c sin(A-B)

    Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

    show that sin A*sin(B-C)+sin B*sin(C-A)+sin C*sin(A-B)=0