Home
Class 11
MATHS
cos(A+B)*cos(A-B)= (a)sin^2A-cos^2B (b)c...

`cos(A+B)*cos(A-B)=` (a)`sin^2A-cos^2B` (b)`cos^2A-sin^2B` (c)`sin^2A-sin^2B` (d)`cos^2A-cos^2B`

A

`sin^(2)A -cos^(2)B`

B

`cos^(2)A -sin^(2)B`

C

`sin^(2)A -sin^(2)B`

D

`cos^(2)A -cos^(2)B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos(A+B) \cdot \cos(A-B) \), we can use the product-to-sum identities. Let's go through the steps: ### Step 1: Use the cosine addition and subtraction formulas The cosine addition and subtraction formulas are: \[ \cos(A+B) = \cos A \cos B - \sin A \sin B \] \[ \cos(A-B) = \cos A \cos B + \sin A \sin B \] ### Step 2: Substitute the formulas into the expression Now, substituting these formulas into our expression: \[ \cos(A+B) \cdot \cos(A-B) = (\cos A \cos B - \sin A \sin B)(\cos A \cos B + \sin A \sin B) \] ### Step 3: Apply the difference of squares This expression can be simplified using the difference of squares: \[ = (\cos A \cos B)^2 - (\sin A \sin B)^2 \] ### Step 4: Expand the squares Now, expanding the squares gives us: \[ = \cos^2 A \cos^2 B - \sin^2 A \sin^2 B \] ### Step 5: Factor the expression We can factor the expression further: \[ = \cos^2 A \cos^2 B - \sin^2 A \sin^2 B \] ### Step 6: Identify the final form This expression matches the form of the options provided. We can rewrite it as: \[ = \cos^2 A - \sin^2 B \] ### Conclusion Thus, the final answer is: \[ \cos(A+B) \cdot \cos(A-B) = \cos^2 A - \sin^2 B \] This corresponds to option (b): \( \cos^2 A - \sin^2 B \). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

sin^(2)A cos^(2)B-cos^(2)A sin^(2)B=sin^(2)A-sin^(2)B

Prove that cos(A+B)cos(A-B)=cos^(2)A-sin^(2)B=cos^(2)B-sin^(2)A

The value of sin^2 A cos^2 B + cos^2 A cos^2 B+sin^2 A sin^2 B + cos^2A sin^2B is ……..

Prove the following identities: tan^(2)A-tan^(2)B=(cos^(2)B-cos^(2)A)/(cos^(2)B cos^(2)A)=(sin^(2)A-sin^(2)B)/(cos^(2)A cos^(2)B)(sin A-sin B)/(cos A+cos B)+(cos A-cos B)/(sin A+sin B)=0

Prove that sin(A+B)sin(A-B)=cos^2B-cos^2A

Prove that sin(A+B)sin(A-B)=sin^(2)A-sin^(2)B=cos^(2)B-cos^(2)A

Prove that cos(A+B) cos(A-B)-sin(A+B) sin(A-B)=cos 2A.

Prove (i)cos(A+B)+cos(A-B)=2cos A cos B(ii)cos(A-B)-cos(A+B)=2sin A sin B

sin ^ (2) A cos ^ (2) B + cos ^ (2) A sin ^ (2) B + sin ^ (2) A sin ^ (2) B + cos ^ (2) A cos ^ (2) B =

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 , then prove that (i) sin^4A+sin^4B=2 sin^2Asin^2B (ii) (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1