Home
Class 11
MATHS
If : A+B+C=pi, "then"" "sin ^(2) A +sin^...

If : `A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C=` A)`2 cos A * cos B * sin C` B)`2 cos B * cos C * sin A` C)`2 sin A * sin B * cos C` D)`2 sin B * sin C * cos A`

A

`2 cos A * cos B * sin C`

B

`2 cos B * cos C * sin A`

C

`2 sin A * sin B * cos C`

D

`2 sin B * sin C * cos A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sin^2 A + \sin^2 B - \sin^2 C \) given that \( A + B + C = \pi \). ### Step-by-Step Solution: 1. **Use the identity for \( \sin^2 \)**: We know that \( \sin^2 A = 1 - \cos^2 A \). Thus, we can rewrite the expression: \[ \sin^2 A + \sin^2 B - \sin^2 C = (1 - \cos^2 A) + (1 - \cos^2 B) - (1 - \cos^2 C) \] Simplifying this gives: \[ = 2 - (\cos^2 A + \cos^2 B - \cos^2 C) \] 2. **Substituting \( C \)**: Since \( A + B + C = \pi \), we can express \( C \) as \( C = \pi - A - B \). Using the cosine of a sum, we have: \[ \cos C = \cos(\pi - A - B) = -\cos(A + B) \] Therefore, \( \cos^2 C = \cos^2(A + B) \). 3. **Using the cosine addition formula**: We can expand \( \cos(A + B) \) using the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Thus, \[ \cos^2 C = (\cos A \cos B - \sin A \sin B)^2 \] 4. **Substituting back into the expression**: Now we substitute back into our expression: \[ \sin^2 A + \sin^2 B - \sin^2 C = 2 - (\cos^2 A + \cos^2 B - \cos^2(A + B)) \] 5. **Using the identity for \( \cos^2 \)**: We can use the identity \( \cos^2 A + \cos^2 B + \cos^2 C = 1 \) (for angles summing to \( \pi \)) to relate the terms. However, we can also directly compute: \[ \sin^2 A + \sin^2 B = 1 - \cos^2 A + 1 - \cos^2 B \] Thus, we can express \( \sin^2 A + \sin^2 B - \sin^2 C \) in terms of \( A \) and \( B \). 6. **Final simplification**: After substituting and simplifying, we arrive at: \[ \sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \cos C \] 7. **Identifying the correct option**: From the options given, we can see that the expression matches with option C: \[ 2 \sin A \sin B \cos C \] ### Final Answer: Thus, the answer is: \[ \text{C) } 2 \sin A \sin B \cos C \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C

If : A+B+C=pi, "then" : sin 2A + sin 2 B - sin 2 C= A) 4 sin A * cos B * cos C B) 4 sin B * sin C * cos A C) 4 sin C * cos A * cos B D) 4 sin A * sin B * sin C

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

a cos A + b cos B + c cos C = 2a sin B sin C

If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

a.cos A + b.cos B + c.cos C = 2a sin B sin C

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

MARVEL PUBLICATION-TRIGONOMETRIC FUNCTIONS-MCQs
  1. If A+B+C=pi then sin2A+sin2B+sin2C=

    Text Solution

    |

  2. If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A)2 cos A * co...

    Text Solution

    |

  3. If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A)2 cos A * ...

    Text Solution

    |

  4. If : A+B+C=pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(...

    Text Solution

    |

  5. (csc theta - sin theta)(sec theta - cos theta)(tan theta+ cot theta)= ...

    Text Solution

    |

  6. sin 2A + sin 2B + sin 2 (A-B)= A)4 sin A * sin B * sin (A-B) B)4 sin A...

    Text Solution

    |

  7. 4 cos A * cos B * sin (A-B)

    Text Solution

    |

  8. sin^(2)A*tan^(2)A+cos^(2)A*cot^(2) A= A)1 + tan^(2)A + cot^(2) A B)tan...

    Text Solution

    |

  9. sqrt(tan^(4) A + cot ^(4) A+ 2)= A)1 + sec^(2) A + csc^(2)A B)sec^(...

    Text Solution

    |

  10. If : sec theta * tan theta (sectheta + tan theta) + (sec theta - tan t...

    Text Solution

    |

  11. If : 4(sin 3 theta * cos^(3) theta * 3 theta * sin^(3) theta)=m * sin ...

    Text Solution

    |

  12. If : tan((pi)/(4)+theta) - tan((pi)/(4) - theta) =m*tan (ntheta),"then...

    Text Solution

    |

  13. If Tan(picostheta)=cot(pisintheta) then the value of (s) of cos(theta-...

    Text Solution

    |

  14. If : sin A + cos A =1, "then" :sin A - cos A = A)pm 1 B)0 C)pm 2 D)pm...

    Text Solution

    |

  15. If : sin^(2) ((pi)/(4) + (theta)/(2)) - cos^(2) ((pi)/(4) + (theta)/(2...

    Text Solution

    |

  16. If : cot theta =(a)/(b), "then" : a *cos 2 theta +b * sin 2 theta= A)a...

    Text Solution

    |

  17. If : sin x +cos x = sin 2 x + cos 2 x , "where" 0 lt x le (pi)/(2), "t...

    Text Solution

    |

  18. If cos e ctheta+cottheta=(11)/2 , then t a ntheta=

    Text Solution

    |

  19. cos(54 0^(@)-theta)-sin(63 0^(@)-theta) is equal to

    Text Solution

    |

  20. If : x = tan25^(@), "then": (tan 155^(@) - tan 115^(@))/(1 + tan 155^(...

    Text Solution

    |