Home
Class 11
MATHS
If : A+B+C=pi, "then"" "sin ^(2) A +sin^...

If : `A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C=` A)`2 cos A * cos B * sin C` B)`2 cos B * cos C * sin A` C)`2 sin A * sin B * cos C` D)`2 sin B * sin C * cos A`

A

`2 cos A * cos B * sin C`

B

`2 cos B * cos C * sin A`

C

`2 sin A * sin B * cos C`

D

`2 sin B * sin C * cos A`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \( \sin^2 A + \sin^2 B - \sin^2 C \) given that \( A + B + C = \pi \). ### Step-by-Step Solution: 1. **Use the identity for \( \sin^2 \)**: We know that \( \sin^2 A = 1 - \cos^2 A \). Thus, we can rewrite the expression: \[ \sin^2 A + \sin^2 B - \sin^2 C = (1 - \cos^2 A) + (1 - \cos^2 B) - (1 - \cos^2 C) \] Simplifying this gives: \[ = 2 - (\cos^2 A + \cos^2 B - \cos^2 C) \] 2. **Substituting \( C \)**: Since \( A + B + C = \pi \), we can express \( C \) as \( C = \pi - A - B \). Using the cosine of a sum, we have: \[ \cos C = \cos(\pi - A - B) = -\cos(A + B) \] Therefore, \( \cos^2 C = \cos^2(A + B) \). 3. **Using the cosine addition formula**: We can expand \( \cos(A + B) \) using the cosine addition formula: \[ \cos(A + B) = \cos A \cos B - \sin A \sin B \] Thus, \[ \cos^2 C = (\cos A \cos B - \sin A \sin B)^2 \] 4. **Substituting back into the expression**: Now we substitute back into our expression: \[ \sin^2 A + \sin^2 B - \sin^2 C = 2 - (\cos^2 A + \cos^2 B - \cos^2(A + B)) \] 5. **Using the identity for \( \cos^2 \)**: We can use the identity \( \cos^2 A + \cos^2 B + \cos^2 C = 1 \) (for angles summing to \( \pi \)) to relate the terms. However, we can also directly compute: \[ \sin^2 A + \sin^2 B = 1 - \cos^2 A + 1 - \cos^2 B \] Thus, we can express \( \sin^2 A + \sin^2 B - \sin^2 C \) in terms of \( A \) and \( B \). 6. **Final simplification**: After substituting and simplifying, we arrive at: \[ \sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \cos C \] 7. **Identifying the correct option**: From the options given, we can see that the expression matches with option C: \[ 2 \sin A \sin B \cos C \] ### Final Answer: Thus, the answer is: \[ \text{C) } 2 \sin A \sin B \cos C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|175 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos
  • TRIGONOMETRIC FUNCTIONS OF COMPOUND ANGLES AND FACTORIZATION FORMULAE

    MARVEL PUBLICATION|Exercise MCQs|101 Videos

Similar Questions

Explore conceptually related problems

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

a cos A + b cos B + c cos C = 2a sin B sin C

Knowledge Check

  • If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C

    A
    `2 cos A * cos B * cos C `
    B
    `2 sin A * cos B * cos C`
    C
    `2 cos A * sin B * cos C`
    D
    `2 cos A * cos B * sin C`
  • If : A+B+C=pi, "then" : sin 2A + sin 2 B - sin 2 C= A) 4 sin A * cos B * cos C B) 4 sin B * sin C * cos A C) 4 sin C * cos A * cos B D) 4 sin A * sin B * sin C

    A
    `4 sin A * cos B * cos C`
    B
    `4 sin B * sin C * cos A `
    C
    `4 sin C * cos A * cos B`
    D
    `4 sin A * sin B * sin C`
  • sin 2A + sin 2B + sin 2 (A-B)= A) 4 sin A * sin B * sin (A-B) B) 4 sin A * cos B * cos (A-B) C) 4 cos A * sin B * cos (A-B) D) 4 cos A * cos B * sin (A-B)

    A
    `4 sin A * sin B * sin (A-B)`
    B
    `4 sin A * cos B * cos (A-B)`
    C
    `4 cos A * sin B * cos (A-B)`
    D
    `4 cos A * cos B * sin (A-B)`
  • Similar Questions

    Explore conceptually related problems

    If A+B+C=pi, prove that sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

    a.cos A + b.cos B + c.cos C = 2a sin B sin C

    If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

    (sin 2A + sin 2B + sin 2C )/( cos A + cos B + cos C -1) =

    ( cos A )/( sin B sin C ) + ( cos B )/( sin C sin A ) + ( cos C )/( sin A sin B ) =